cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 114 results. Next

A110801 Numbers n such that 12n + 1 is prime.

Original entry on oeis.org

1, 3, 5, 6, 8, 9, 13, 15, 16, 19, 20, 23, 26, 28, 29, 31, 33, 34, 35, 36, 38, 45, 48, 50, 51, 55, 56, 59, 61, 63, 64, 69, 71, 73, 78, 83, 84, 85, 86, 89, 91, 93, 94, 96, 100, 101, 103, 104, 108, 110, 115, 119, 121, 124, 129, 133, 134, 135, 138, 139, 141, 145, 146, 148
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 20 2005

Keywords

Comments

Corresponds to even numbers in A024898. - Michael B. Porter, Oct 27 2009

Examples

			If n=96 then 12*n + 1 = 1153 (prime).
		

Crossrefs

Cf. A167055, A167056, A167057, A024898; primes are in A068228. - Michael B. Porter, Oct 27 2009

Programs

Extensions

More terms from Klaus Brockhaus, Jan 02 2009

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A068227 The "genity" sequence of the primes, i.e., a(n) = g(p) = ((p mod 4) + (p mod 6))/2, where p is the n-th prime.

Original entry on oeis.org

2, 3, 3, 2, 4, 1, 3, 2, 4, 3, 2, 1, 3, 2, 4, 3, 4, 1, 2, 4, 1, 2, 4, 3, 1, 3, 2, 4, 1, 3, 2, 4, 3, 2, 3, 2, 1, 2, 4, 3, 4, 1, 4, 1, 3, 2, 2, 2, 4, 1, 3, 4, 1, 4, 3, 4, 3, 2, 1, 3, 2, 3, 2, 4, 1, 3, 2, 1, 4, 1, 3, 4, 2, 1, 2, 4, 3, 1, 3, 1, 4, 1, 4, 1, 2, 4, 3, 1, 3, 2, 4, 4, 2, 4, 2, 4, 3, 3, 2, 1, 2, 3, 4
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

Keywords

Comments

The name "genity" was derived from "genes" and "parity", since the fourfold values of g(p) in a sequence corresponding to prime arguments resemble the genetic sequences of the nucleotides in the DNA. Parity is also related, since it originally means a (mod 2) feature, while here we categorize the primes (mod 4) and (mod 6), simultaneously.
The arithmetic function g(p) = ((p mod 4) + (p mod 6))/2 provides integer values for prime arguments, such that 1 <= g(p) <= 4 and is determined by the congruence class of p (mod 12). Specifically, g(p)=1 if p==1 (mod 12), g(p)=2 if p=2 or p==7 (mod 12), g(p)=3 if p=3 or p==5 (mod 12) and g(p)=4 if p==11 (mod 12).
Dickson's conjecture implies that every finite sequence of numbers from 1 to 4 occurs infinitely often in this sequence.

Crossrefs

Programs

  • Mathematica
    Table[(Mod[Prime[n], 4] + Mod[Prime[n], 6])/2, {n, 1, 100}]
  • PARI
    for(i=1,120,print((prime(i)%4+prime(i)%6)/2))

Extensions

Edited by Dean Hickerson and Robert G. Wilson v, Mar 06 2002

A141373 Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).

Original entry on oeis.org

3, 19, 43, 67, 139, 163, 211, 283, 307, 331, 379, 499, 523, 547, 571, 619, 643, 691, 739, 787, 811, 859, 883, 907, 1051, 1123, 1171, 1291, 1459, 1483, 1531, 1579, 1627, 1699, 1723, 1747, 1867, 1987, 2011, 2083, 2131, 2179, 2203, 2251, 2347, 2371, 2467, 2539
Offset: 1

Views

Author

T. D. Noe, May 13 2005; Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

The discriminant is -192 (or 96, or ...), depending on which quadratic form is used for the definition. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1. See A107132 for more information.
Except for 3, also primes of the forms 4x^2 + 4xy + 19y^2 and 16x^2 + 8xy + 19y^2. See A140633. - T. D. Noe, May 19 2008

Examples

			19 is a member because we can write 19=4*2^2+4*2*1-5*1^2 (or 19=4*1^2+12*1*1+3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5),
A038873 (d=8),
A068228, A141123 (d=12),
A038883 (d=13),
A038889 (d=17),
A141158 (d=20),
A141159, A141160 (d=21),
A141170, A141171 (d=24),
A141172, A141173 (d=28),
A141174, A141175 (d=32),
A141176, A141177 (d=33),
A141178 (d=37),
A141179, A141180 (d=40),
A141181 (d=41),
A141182, A141183 (d=44),
A033212, A141785 (d=45),
A068228, A141187 (d=48),
A141188 (d=52),
A141189 (d=53),
A141190, A141191 (d=56),
A141192, A141193 (d=57),
A141215 (d=61),
A141111, A141112 (d=65),
A141336, A141337 (d=92),
A141338, A141339 (d=93),
A141161, A141163 (d=148),
A141165, A141166 (d=229),

Programs

  • Magma
    [3] cat [ p: p in PrimesUpTo(3000) | p mod 24 in {19 } ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[3, 0, 16, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

Except for 3, the primes are congruent to 19 (mod 24). - T. D. Noe, May 02 2008

Extensions

More terms from Colin Barker, Apr 05 2015
Edited by N. J. A. Sloane, Jul 14 2019, combining two identical entries both with multiple cross-references.

A068232 a(n) is the smallest prime p such that p and the next n-1 primes are all == 1 (mod 12).

Original entry on oeis.org

13, 661, 8317, 12829, 586153, 1081417, 7790917, 7790917, 370861009, 370861009, 370861009, 5637496849, 289391626057, 469257742237, 628337233501, 84424712545429, 155494152002017, 341821313785729
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

Keywords

Comments

Dickson's conjecture implies that a(n) exists for all n.

Crossrefs

Programs

  • Mathematica
    For[i=n=1, True, Null, For[j=0, jHarvey P. Dale, Dec 24 2020 *)
  • PARI
    {i=n=1; while(1,j=0; while(j
    				

Extensions

Edited by Dean Hickerson, Mar 06 2002
a(12)-a(15) from Giovanni Resta, Feb 18 2006
a(16)-a(18) from Giovanni Resta, Aug 04 2013

A068233 a(n) is the smallest prime p such that p and the next n-1 primes are all == 7 (mod 12).

Original entry on oeis.org

7, 199, 199, 32443, 180799, 180799, 4338787, 84885631, 472798219, 1786054267, 6024282871, 64791932287, 592175010019, 6265824724519, 7816088451907, 24660781037467
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

Keywords

Comments

Dickson's conjecture implies that a(n) exists for all n.

Crossrefs

Programs

  • Mathematica
    For[i=n=1, True, Null, For[j=0, j
    				
  • PARI
    {i=n=1; while(1,j=0; while(j
    				

Extensions

Edited by Dean Hickerson, Mar 06 2002
More terms from Giovanni Resta, Feb 18 2006
a(16) from Giovanni Resta, Aug 04 2013

A068234 a(n) is the smallest prime p such that p and the next n-1 primes are all == 5 (mod 12).

Original entry on oeis.org

5, 509, 4397, 42509, 647417, 647417, 1248869, 13175609, 234946997, 1039154933, 7114719473, 32021552837, 32021552837, 1237381737257, 2904797643617, 2904797643617, 2904797643617
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

Keywords

Comments

Dickson's conjecture implies that a(n) exists for all n.
a(18) > 4*10^14. - Giovanni Resta, Aug 04 2013

Crossrefs

Programs

  • Mathematica
    For[i=n=1, True, Null, For[j=0, jHarvey P. Dale, Feb 02 2022 *)
  • PARI
    {i=n=1; while(1,j=0; while(j
    				

Extensions

Edited by Dean Hickerson, Mar 06 2002
More terms from Giovanni Resta, Feb 18 2006

A068235 a(n) is the smallest prime p such that p and the next n-1 primes are all == 11 (mod 12).

Original entry on oeis.org

11, 467, 1499, 16763, 260339, 2003387, 7722419, 20221283, 927161471, 4284484931, 7355362139, 84805717127, 478527373859, 2046207697631, 7302359785151, 21104656617827, 21104656617827
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

Keywords

Comments

Dickson's conjecture implies that a(n) exists for all n.
a(18) > 4*10^14. - Giovanni Resta, Aug 04 2013

Crossrefs

Programs

  • Mathematica
    For[i=n=1, True, Null, For[j=0, j
    				
  • PARI
    {i=n=1; while(1,j=0; while(j
    				

Extensions

Edited by Dean Hickerson, Mar 06 2002
More terms from Giovanni Resta, Feb 18 2006
a(16)-a(17) from Giovanni Resta, Aug 04 2013

A141161 Primes of the form 4*x^2+6*x*y-7*y^2.

Original entry on oeis.org

3, 7, 11, 41, 47, 53, 71, 73, 83, 101, 127, 149, 157, 173, 181, 197, 211, 223, 229, 263, 271, 307, 337, 359, 373, 379, 397, 419, 433, 443, 509, 521, 571, 593, 599, 613, 617, 619, 641, 659, 673, 677, 719, 733, 739, 743, 751, 761, 773, 787, 811, 821, 887, 937
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 13 2008

Keywords

Comments

Discriminant = 148. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
Also primes represented by the improperly equivalent form 7*x^2 + 6*x*y - 4*y^2

Examples

			a(8)=73 because we can write 73= 4*4^2+6*4*3-7*3^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141163 (d=148).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    q := 4*x^2 + 6*x*y - 7*y^2; pmax = 1000; xmax = 100; ymin = -xmax; ymax = xmax; k = 1; prms0 = {}; prms = {2}; While[prms != prms0, xx = yy = {}; prms0 = prms; prms = Reap[Do[p = q; If[2 <= p <= pmax && PrimeQ[p], AppendTo[xx, x]; AppendTo[yy, y]; Sow[p]], {x, 1, k*xmax}, {y, k*ymin, k*ymax}]][[2, 1]] // Union; xmax = Max[xx]; ymin = Min[yy]; ymax = Max[yy]; k++; Print["k = ", k, " xmax = ", xmax, " ymin = ", ymin, " ymax = ", ymax ]]; A141161 = prms (* Jean-François Alcover, Oct 26 2016 *)
  • Sage
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([4, 6, -7])
    Q.represented_positives(937, 'prime')  # Peter Luschny, Oct 26 2016

A141165 Primes of the form 9*x^2+7*x*y-5*y^2.

Original entry on oeis.org

3, 5, 11, 17, 19, 43, 61, 71, 83, 97, 103, 149, 151, 167, 181, 233, 271, 277, 293, 307, 311, 337, 367, 373, 397, 401, 409, 421, 431, 433, 457, 463, 467, 491, 557, 569, 587, 631, 641, 661, 673, 683, 701, 733, 743, 751, 757, 769, 787, 821, 859, 863, 883, 911
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 229. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac. They can represent primes only if gcd(a,b,c)=1. [Edited by M. F. Hasler, Jan 27 2016]
Also primes represented by the improperly equivalent form 5*x^2+7*x*y-9*y^2. - Juan Arias-de-Reyna, Mar 17 2011
36*a(n) has the form z^2 - 229*y^2, where z = 18*x+7*y. [Bruno Berselli, Jun 25 2014]
Appears to be the complement of A141166 in A268155, primes that are squares mod 229. - M. F. Hasler, Jan 27 2016

Examples

			a(10)=97 because we can write 97= 9*3^2+7*3*1-5*1^2
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory
  • D. B. Zagier, Zetafunktionen und quadratische Körper

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141166 (d=229).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    q := 9*x^2 + 7*x*y - 5*y^2; pmax = 1000; xmax = xmax0 = 50; ymin = ymin0 = -50; ymax = ymax0 = 50; k = 1.3 (expansion coeff. for maxima *); prms0 = {}; prms = {2}; While[prms != prms0, xx = yy = {}; prms0 = prms; prms = Reap[Do[p = q; If[2 <= p <= pmax && PrimeQ[p], AppendTo[xx, x]; AppendTo[yy, y]; Sow[p]], {x, 1, If[xmax == xmax0, xmax, Floor[k*xmax]]}, {y, If[ymin == ymin0, ymin, Floor[k*ymin]], If[ymax == ymax0, ymax, Floor[k*ymax]]}]][[2, 1]] // Union; xmax = Max[xx]; ymin = Min[yy]; ymax = Max[yy]; Print[Length[prms], " terms", "  xmax = ", xmax, "  ymin = ", ymin, "  ymax = ", ymax ]]; A141165 = prms (* Jean-François Alcover, Oct 26 2016 *)
  • PARI
    is_A141165(p)=qfbsolve(Qfb(9,7,-5),p) \\ Returns nonzero (actually, a solution [x,y]) iff p is a member of the sequence. For efficiency it is assumed that p is prime. - M. F. Hasler, Jan 27 2016
    
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([9, 7, -5])
    print(Q.represented_positives(911, 'prime')) # Peter Luschny, Oct 26 2016
Previous Showing 21-30 of 114 results. Next