A139277
a(n) = n*(8*n+5).
Original entry on oeis.org
0, 13, 42, 87, 148, 225, 318, 427, 552, 693, 850, 1023, 1212, 1417, 1638, 1875, 2128, 2397, 2682, 2983, 3300, 3633, 3982, 4347, 4728, 5125, 5538, 5967, 6412, 6873, 7350, 7843, 8352, 8877, 9418, 9975, 10548, 11137, 11742, 12363, 13000
Offset: 0
Cf.
A139271,
A139272,
A139273,
A139274,
A139275,
A139276,
A139278,
A139279,
A139280,
A139281,
A139282.
-
Table[n (8 n + 5), {n, 0, 50}] (* Bruno Berselli, Aug 22 2018 *)
LinearRecurrence[{3,-3,1},{0,13,42},50] (* Harvey P. Dale, Dec 04 2018 *)
-
a(n)=n*(8*n+5) \\ Charles R Greathouse IV, Jun 17 2017
A195314
Centered 28-gonal numbers.
Original entry on oeis.org
1, 29, 85, 169, 281, 421, 589, 785, 1009, 1261, 1541, 1849, 2185, 2549, 2941, 3361, 3809, 4285, 4789, 5321, 5881, 6469, 7085, 7729, 8401, 9101, 9829, 10585, 11369, 12181, 13021, 13889, 14785, 15709, 16661, 17641, 18649, 19685, 20749, 21841, 22961, 24109, 25285, 26489
Offset: 1
-
[(14*n^2-14*n+1): n in [1..50]]; // Vincenzo Librandi, Sep 19 2011
-
Table[14n^2-14n+1,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,29,85},50]
-
a(n)=14*n^2-14*n+1 \\ Charles R Greathouse IV, Oct 07 2015
A195315
Centered 32-gonal numbers.
Original entry on oeis.org
1, 33, 97, 193, 321, 481, 673, 897, 1153, 1441, 1761, 2113, 2497, 2913, 3361, 3841, 4353, 4897, 5473, 6081, 6721, 7393, 8097, 8833, 9601, 10401, 11233, 12097, 12993, 13921, 14881, 15873, 16897, 17953, 19041, 20161, 21313, 22497, 23713, 24961, 26241, 27553, 28897, 30273
Offset: 1
-
[(16*n^2-16*n+1): n in [1..50]]; // Vincenzo Librandi, Sep 19 2011
-
Table[16*n^2 - 16*n + 1, {n, 1, 41}] (* Amiram Eldar, Feb 11 2022 *)
LinearRecurrence[{3,-3,1},{1,33,97},50] (* Harvey P. Dale, Feb 11 2024 *)
-
a(n)=16*n^2-16*n+1 \\ Charles R Greathouse IV, Oct 07 2015
A195316
Centered 36-gonal numbers.
Original entry on oeis.org
1, 37, 109, 217, 361, 541, 757, 1009, 1297, 1621, 1981, 2377, 2809, 3277, 3781, 4321, 4897, 5509, 6157, 6841, 7561, 8317, 9109, 9937, 10801, 11701, 12637, 13609, 14617, 15661, 16741, 17857, 19009, 20197, 21421, 22681, 23977, 25309, 26677, 28081, 29521, 30997, 32509
Offset: 1
A195318
Centered 44-gonal numbers.
Original entry on oeis.org
1, 45, 133, 265, 441, 661, 925, 1233, 1585, 1981, 2421, 2905, 3433, 4005, 4621, 5281, 5985, 6733, 7525, 8361, 9241, 10165, 11133, 12145, 13201, 14301, 15445, 16633, 17865, 19141, 20461, 21825, 23233, 24685, 26181, 27721, 29305, 30933, 32605, 34321, 36081, 37885, 39733
Offset: 1
-
[22*n^2 - 22*n + 1: n in [1..50]]; // Vincenzo Librandi, Sep 21 2011
-
Table[22n^2-22n+1,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,45,133},50] (* Harvey P. Dale, Mar 16 2019 *)
-
a(n)=22*n^2-22*n+1 \\ Charles R Greathouse IV, Jun 17 2017
A195605
a(n) = (4*n*(n+2)+(-1)^n+1)/2 + 1.
Original entry on oeis.org
2, 7, 18, 31, 50, 71, 98, 127, 162, 199, 242, 287, 338, 391, 450, 511, 578, 647, 722, 799, 882, 967, 1058, 1151, 1250, 1351, 1458, 1567, 1682, 1799, 1922, 2047, 2178, 2311, 2450, 2591, 2738, 2887, 3042, 3199, 3362, 3527, 3698, 3871, 4050, 4231, 4418, 4607, 4802
Offset: 0
Cf.
A047621 (contains first differences),
A016754 (contains the sum of any two consecutive terms).
Cf.
A033585,
A069129,
A077221,
A102083,
A139098,
A139271-
A139277,
A139592,
A139593,
A188135,
A194268,
A194431,
A195241 [incomplete list].
-
[(4*n*(n+2)+(-1)^n+3)/2: n in [0..48]];
-
CoefficientList[Series[(2 + 3 x + 4 x^2 - x^3) / ((1 + x) (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
LinearRecurrence[{2,0,-2,1},{2,7,18,31},50] (* Harvey P. Dale, Jan 21 2017 *)
-
for(n=0, 48, print1((4*n*(n+2)+(-1)^n+3)/2", "));
A200994
Triangular numbers, T(m), that are three-halves of another triangular number; T(m) such that 2*T(m) = 3*T(k) for some k.
Original entry on oeis.org
0, 15, 1485, 145530, 14260470, 1397380545, 136929032955, 13417647849060, 1314792560174940, 128836253249295075, 12624638025870742425, 1237085690282083462590, 121221773009618308591410, 11878496669252312158495605, 1163971451813716973223977895
Offset: 0
2*0 = 3*0.
2*15 = 3*10.
2*1485 = 3*990.
2*145530 = 3*97020.
- Colin Barker, Table of n, a(n) for n = 0..500
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(15*x/((1-x)*(1-98*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
LinearRecurrence[{99, -99, 1}, {0, 15, 1485}, 20] (* T. D. Noe, Feb 15 2012 *)
-
concat(0, Vec(15*x/((1-x)*(1-98*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
A322790
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 17, 5, 1, 1, 99, 49, 7, 1, 1, 577, 485, 97, 9, 1, 1, 3363, 4801, 1351, 161, 11, 1, 1, 19601, 47525, 18817, 2889, 241, 13, 1, 1, 114243, 470449, 262087, 51841, 5291, 337, 15, 1, 1, 665857, 4656965, 3650401, 930249, 116161, 8749, 449, 17, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 17, 99, 577, 3363, 19601, ...
1, 5, 49, 485, 4801, 47525, 470449, ...
1, 7, 97, 1351, 18817, 262087, 3650401, ...
1, 9, 161, 2889, 51841, 930249, 16692641, ...
1, 11, 241, 5291, 116161, 2550251, 55989361, ...
1, 13, 337, 8749, 227137, 5896813, 153090001, ...
-
A[0, k_] := 1; A[n_, k_] := Sum[Binomial[2 k, 2 j]*(n + 1)^(k - j)*n^j, {j, 0, k}]; Table[A[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 26 2018 *)
A194268
a(n) = 8*n^2 + 7*n + 1.
Original entry on oeis.org
1, 16, 47, 94, 157, 236, 331, 442, 569, 712, 871, 1046, 1237, 1444, 1667, 1906, 2161, 2432, 2719, 3022, 3341, 3676, 4027, 4394, 4777, 5176, 5591, 6022, 6469, 6932, 7411, 7906, 8417, 8944, 9487, 10046, 10621, 11212, 11819, 12442, 13081, 13736, 14407, 15094, 15797
Offset: 0
-
[8*n^2 +7*n + 1: n in [0..50]]; // Vincenzo Librandi, Sep 07 2011
-
A194268:=n->8*n^2+7*n+1: seq(A194268(n), n=0..50); # Wesley Ivan Hurt, Jul 15 2014
-
Table[8n^2+7n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,16,47},50] (* Harvey P. Dale, Apr 06 2014 *)
-
a(n)=8*n^2+7*n+1 \\ Charles R Greathouse IV, Oct 07 2015
A194431
a(n) = 8*n^2 - 6*n - 1.
Original entry on oeis.org
1, 19, 53, 103, 169, 251, 349, 463, 593, 739, 901, 1079, 1273, 1483, 1709, 1951, 2209, 2483, 2773, 3079, 3401, 3739, 4093, 4463, 4849, 5251, 5669, 6103, 6553, 7019, 7501, 7999, 8513, 9043, 9589, 10151, 10729, 11323, 11933, 12559, 13201, 13859, 14533, 15223, 15929
Offset: 1
-
[8*n^2 - 6*n - 1: n in [1..50]]; // Vincenzo Librandi, Sep 07 2011
-
Table[8n^2-6n-1,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,19,53},50] (* Harvey P. Dale, May 29 2021 *)
-
a(n)=8*n^2-6*n-1 \\ Charles R Greathouse IV, Oct 07 2015
Comments