A069278
17-almost primes (generalization of semiprimes).
Original entry on oeis.org
131072, 196608, 294912, 327680, 442368, 458752, 491520, 663552, 688128, 720896, 737280, 819200, 851968, 995328, 1032192, 1081344, 1105920, 1114112, 1146880, 1228800, 1245184, 1277952, 1492992, 1507328, 1548288, 1605632, 1622016
Offset: 1
Sequences listing r-almost primes, that is, the n such that
A001222(n) = r:
A000040 (r = 1),
A001358 (r = 2),
A014612 (r = 3),
A014613 (r = 4),
A014614 (r = 5),
A046306 (r = 6),
A046308 (r = 7),
A046310 (r = 8),
A046312 (r = 9),
A046314 (r = 10),
A069272 (r = 11),
A069273 (r = 12),
A069274 (r = 13),
A069275 (r = 14),
A069276 (r = 15),
A069277 (r = 16), this sequence (r = 17),
A069279 (r = 18),
A069280 (r = 19),
A069281 (r = 20). -
Jason Kimberley, Oct 02 2011
-
Select[Range[2*10^6],PrimeOmega[#]==17&] (* Harvey P. Dale, Sep 28 2016 *)
-
k=17; start=2^k; finish=2000000; v=[]
for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A069278(n):
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,17)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f) # Chai Wah Wu, Aug 31 2024
A101695
a(n) = n-th n-almost prime.
Original entry on oeis.org
2, 6, 18, 40, 108, 224, 480, 1296, 2688, 5632, 11520, 25600, 53248, 124416, 258048, 540672, 1105920, 2228224, 4587520, 9830400, 19922944, 40894464, 95551488, 192937984, 396361728, 822083584, 1660944384, 3397386240, 6845104128
Offset: 1
a(1) = first 1-almost prime = first prime = A000040(1) = 2.
a(2) = 2nd 2-almost prime = 2nd semiprime = A001358(2) = 6.
a(3) = 3rd 3-almost prime = A014612(3) = 18.
a(4) = 4th 4-almost prime = A014613(4) = 40.
a(5) = 5th 5-almost prime = A014614(5) = 108.
Cf.
A000040,
A001358,
A014612,
A014613,
A046314,
A046306,
A046308,
A046310,
A046312,
A046314,
A069272,
A069273,
A069274,
A069275,
A069276,
A069277,
A069278,
A069279,
A069280,
A069281,
A101637,
A101638,
A101605,
A101606.
-
A101695 := proc(n)
local s,a ;
s := 0 ;
for a from 2^n do
if numtheory[bigomega](a) = n then
s := s+1 ;
if s = n then
return a;
end if;
end if;
end do:
end proc: # R. J. Mathar, Aug 09 2012
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2; lst = {}; Do[ AppendTo[lst, AlmostPrime[n, n]], {n, 30}]; lst (* Robert G. Wilson v, Oct 07 2007 *)
-
from math import prod, isqrt
from sympy import primerange, primepi, integer_nthroot
def A101695(n):
if n == 1: return 2
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
kmin, kmax = 1,2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
A125149
a(n) is the least k such that the n-almost prime count is positive and equal to the (n-1)-almost prime count. a(0) = 1.
Original entry on oeis.org
1, 2, 10, 15495, 151165506066
Offset: 0
a(1) = 2 since 1 has no prime factors and 2 has one prime factor, therefore prime factor counts of 0 and 1 occur equally often in the first 2 integers.
a(2) = 10 since there are 4 primes {2, 3, 5 & 7} and 4 semiprimes {4, 6, 9 & 10} less than or equal to 10.
a(4) = 151165506066 since there are 32437255807 4-almost primes and 3-almost primes <= a(4).
Sequences listing r-almost primes, that is, k such that
A001222(k) = r:
A000040 (r = 1),
A001358 (r = 2),
A014612 (r = 3),
A014613 (r = 4),
A014614 (r = 5),
A046306 (r = 6),
A046308 (r = 7),
A046310 (r = 8),
A046312 (r = 9),
A046314 (r = 10),
A069272 (r = 11),
A069273 (r = 12),
A069274 (r = 13),
A069275 (r = 14),
A069276 (r = 15),
A069277 (r = 16),
A069278 (r = 17),
A069279 (r = 18),
A069280 (r = 19),
A069281 (r = 20).
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
f[n_] := Block[{k = 2^n}, While[AlmostPrimePi[n, k] < AlmostPrimePi[n - 1, k], k++ ]; k];
Changed 33 to 34 in a comment. -
T. D. Noe, Aug 11 2010
A101696
a(n) = sum(i=1,n)(i-th i-almost prime). Cumulative sums of A101695.
Original entry on oeis.org
2, 8, 26, 66, 174, 398, 878, 2174, 4862, 10494, 22014, 45054, 98302, 222718, 480766, 1021438, 2127358, 4355582, 8943102, 18773502, 38696446, 79590910, 175142398, 368080382, 764442110, 1586525694, 3247470078, 6644856318, 13489960446
Offset: 1
a(1) = first 1-almost prime = first prime = A000040(1) = 2.
a(2) = 2 + 2nd 2-almost prime = 2 + A001358(2) = 2+ 6 = 8.
a(3) = a(2) + 3rd 3-almost prime = 8+A014612(3) = 8+18 = 26.
a(4) = a(3) + 4th 4-almost prime = 26+A014613(4) = 26+40 = 66.
a(5) = a(4) + 5th 5-almost prime = 66+A014614(5) = 66+108=174.
...
a(12) = a(11) + 12th 12-almost prime = 22014 + 23040 = 45054 (the first nontrivial palindrome in the sequence).
Cf.
A000040,
A001358,
A014612,
A014613,
A046314,
A046306,
A046308,
A046310,
A046312,
A046314,
A069272,
A069273,
A069274,
A069275,
A069276,
A069277,
A069278,
A069279,
A069280,
A069281,
A101637,
A101638,
A101605,
A101606,
A101695.
A337112
Smallest term of A337081 that has exactly n prime factors, or 0 if no such term exists.
Original entry on oeis.org
0, 4, 0, 90, 675, 1134, 6318, 4374, 32805, 255879, 1003833, 531441, 327544803, 20751953125, 225830078125, 91552734375, 1068115234375, 23651123046875, 316619873046875, 1697540283203125, 13256072998046875, 85353851318359375, 541210174560546875, 4518032073974609375, 58233737945556640625
Offset: 1
Cf.
A056472 (all factorizations of n).
Cf. r-almost primes:
A000040 (r = 1),
A001358 (r = 2),
A014612 (r = 3),
A014613 (r = 4),
A014614 (r = 5),
A046306 (r = 6),
A046308 (r = 7),
A046310 (r = 8),
A046312 (r = 9),
A046314 (r = 10),
A069272 (r = 11),
A069273 (r = 12),
A069274 (r = 13),
A069275 (r = 14),
A069276 (r = 15),
A069277 (r = 16),
A069278 (r = 17),
A069279 (r = 18),
A069280 (r = 19),
A069281 (r = 20).
Original entry on oeis.org
2, 12, 216, 8640, 933120, 209018880, 100329062400, 130026464870400, 349511137571635200, 1968446726803449446400, 22676506292775737622528000, 522466704985552994823045120000, 27820307107070725868337506549760000
Offset: 1
a(1) = 2 = prime(1).
a(2) = 12 = 2 * 6 = prime(1) * semiprime(2) = 2^2 * 3.
a(3) = 216 = 2 * 6 * 18 = prime(1) * semiprime(2) * 3-almostprime(3) = 2^3 * 3^3.
a(4) = 8640 = 2 * 6 * 18 * 40 = prime(1) * semiprime(2) * 3-almostprime(3) * 4-almostprime(4) = 2^6 * 3^3 * 5.
a(15) = 893179304874387947794472921245209518407680000 = 2 * 6 * 18 * 40 * 108 * 224 * 480 * 1296 * 2688 * 5632 * 11520 * 23040 * 53248 * 124416 * 258048 = 2^88 * 3^23 * 5^4 * 7^3 * 11 * 13.
Cf.
A000040,
A001358,
A014612,
A014613,
A046314,
A046306,
A046308,
A046310,
A046312,
A046314,
A069272,
A069273,
A069274,
A069275,
A069276,
A069277,
A069278,
A069279,
A069280,
A069281,
A101637,
A101638,
A101605,
A101606,
A101695.
A321590
Smallest number m that is a product of exactly n primes and is such that m-1 and m+1 are products of exactly n-1 primes.
Original entry on oeis.org
4, 50, 189, 1863, 10449, 447849, 4449249, 5745249, 3606422049, 16554218751, 105265530369, 1957645712385
Offset: 2
For n = 3, 50 = 2*5*5, and the numbers before and after 50 are 49 = 7*7 and 51 = 3*17.
Sequences listing r-almost primes, that is, the n such that
A001222(n) = r:
A000040 (r = 1),
A001358 (r = 2),
A014612 (r = 3),
A014613 (r = 4),
A014614 (r = 5),
A046306 (r = 6),
A046308 (r = 7),
A046310 (r = 8),
A046312 (r = 9),
A046314 (r = 10),
A069272 (r = 11),
A069273 (r = 12),
A069274 (r = 13),
A069275(r = 14),
A069276 (r = 15),
A069277 (r = 16),
A069278 (r = 17),
A069279 (r = 18),
A069280 (r = 19),
A069281 (r = 20).
-
a[n_] := Module[{o={0,0,0}, k=1}, While[o!={n-1,n,n-1}, o=Rest[AppendTo[o,PrimeOmega[k]]]; k++]; k-2]; Array[a,7,2] (* Amiram Eldar, Nov 14 2018 *)
-
{for(n=2,10,for(k=2^n,10^12,if(n==bigomega(k) &&
n-1==bigomega(k-1) && n-1==bigomega(k+1),print1(k", ");break())))}
Comments