cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A119255 Duplicate of A071969.

Original entry on oeis.org

1, 1, 2, 6, 19, 63, 219, 787, 2897, 10869, 41414, 159822, 623391, 2453727, 9733866, 38877318, 156206233, 630947421, 2560537092, 10435207116, 42689715279, 175243923783, 721649457417, 2980276087005, 12340456995177, 51222441676513
Offset: 0

Views

Author

Keywords

A071946 Triangle T(n,k) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R = (1,0), V = (0,1) and D = (3,1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 6, 6, 1, 6, 13, 19, 19, 1, 8, 23, 44, 63, 63, 1, 10, 37, 87, 156, 219, 219, 1, 12, 55, 155, 330, 568, 787, 787, 1, 14, 77, 255, 629, 1260, 2110, 2897, 2897, 1, 16, 103, 395, 1111, 2527, 4856, 7972, 10869, 10869, 1, 18, 133, 583, 1849, 4706, 10130, 18889, 30545, 41414, 41414
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1, 1;
  1, 2,  2;
  1, 4,  6,  6;
  1, 6, 13, 19, 19;
  ...
		

Crossrefs

Related arrays: A071943, A071944, A071945.
A108076 is the reverse, A119254 is the row sums and A071969 is the last (largest) number in each row.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
         `if`(k<0 or nAlois P. Heinz, May 05 2023
  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 0 && k == 0, 1,
       If[k < 0 || n < k, 0, T[n-1, k] + T[n, k-1] + T[n-3, k-1]]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 25 2025, after Alois P. Heinz *)

Extensions

More terms from Joshua Zucker, May 10 2006

A369265 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^3) ).

Original entry on oeis.org

1, 2, 7, 31, 153, 806, 4439, 25250, 147193, 874732, 5279635, 32276245, 199439761, 1243633652, 7815804351, 49455190791, 314807497953, 2014530780524, 12952334769203, 83628832755779, 542022781854953, 3525150296312984, 22998642171764363, 150478455899387966
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • Maple
    A369265 := proc(n)
        add(binomial(n+1,k) * binomial(3*n-3*k+1,n-3*k),k=0..floor(n/3)) ;
        %/(n+1) ;
    end proc;
    seq(A369265(n),n=0..70) ; # R. J. Mathar, Jan 25 2024
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^3))/x)
    
  • PARI
    a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(3*n-3*k+1,n-3*k).
D-finite with recurrence 16*(n+1)*(2*n+1)*a(n) +4*(-89*n^2+15*n+2)*a(n-1) +3*(345*n^2-603*n+274)*a(n-2) +18*(-41*n^2+45*n+94)*a(n-3) +54*(-4*n^2+57*n-137)*a(n-4) +486*(n-4)*(n-5)*a(n-5) -243*(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Jan 25 2024
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x)^2 * (1+x^3) )^(n+1). - Seiichi Manyama, Feb 14 2024

A071944 Triangle read by rows giving numbers of paths in a lattice satisfying certain conditions.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 6, 1, 4, 9, 16, 19, 1, 5, 14, 31, 54, 63, 1, 6, 20, 52, 111, 188, 219, 1, 7, 27, 80, 197, 405, 676, 787, 1, 8, 35, 116, 320, 752, 1508, 2492, 2897, 1, 9, 44, 161, 489, 1276, 2900, 5712, 9361, 10869, 1, 10, 54, 216, 714, 2034, 5095, 11296, 21933, 35702, 41414
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Examples

			Triangle begins with:
  1;
  1,   1;
  1,   2,   2;
  1,   3,   5,   6;
  1,   4,   9,  16,  19;
  1,   5,  14,  31,  54,  63;
  1,   6,  20,  52, 111, 188, 219;
  1,   7,  27,  80, 197, 405, 676, 787;
  ...
		

Crossrefs

Diagonal entries form A071969.

Programs

  • Magma
    [[((n-k+1)/(n+1))*(&+[Binomial(n+1, j)*Binomial(n+k -3*j, n): j in [0..Floor(k/3)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 17 2019
    
  • Maple
    a := proc(n,k) if k<=n then (n-k+1)*sum(binomial(n+1,i)*binomial(n+k-3*i,n),i=0..k/3)/(n+1) else 0 fi end;
  • Mathematica
    Table[((n-k+1)/(n+1))*Sum[Binomial[n+1, j]*Binomial[n+k-3*j, n], {j, 0, k/3}], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2019 *)
  • PARI
    {T(n,k) = ((n-k+1)/(n+1))*sum(j=0, floor(k/3), binomial(n+1, j)* binomial(n+k -3*j, n))}; \\ G. C. Greubel, Mar 17 2019
    
  • Sage
    [[((n-k+1)/(n+1))*sum(binomial(n+1,j)*binomial(n+k-3*j,n) for j in (0..floor(k/3))) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 17 2019

Formula

T(n, k) = ((n-k+1)/(n+1))*Sum_{i=0..k/3} binomial(n+1, i)*binomial(n+k -3*i, n), for k <= n.

Extensions

More terms from Emeric Deutsch, Dec 19 2003

A369268 Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+x^3)^3 ).

Original entry on oeis.org

1, 1, 2, 8, 29, 105, 414, 1695, 7046, 29853, 128644, 561262, 2474142, 11006108, 49343508, 222715440, 1011217425, 4615519083, 21165513228, 97467424198, 450541090701, 2089777230606, 9723511785608, 45371996501895, 212271904284993, 995513843930049, 4679212044797252
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+x^3)^3)/x)
    
  • PARI
    a(n, s=3, t=3, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+3,k) * binomial(2*n-3*k,n-3*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x) * (1+x^3)^3 )^(n+1). - Seiichi Manyama, Feb 14 2024

A119254 Row sums of A071946.

Original entry on oeis.org

1, 2, 5, 17, 58, 202, 729, 2695, 10140, 38719, 149682, 584672, 2304045, 9149194, 36573273, 147057039, 594374148, 2413480053, 9840832968, 40276235226, 165403090815, 681373222191, 2814872996190, 11659083772986, 48407568680323, 201431186725778, 839913707978789
Offset: 0

Views

Author

Joshua Zucker, May 10 2006

Keywords

Crossrefs

Cf. A071946 is the triangle and A071969 has the last number of each row.

A369266 Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+x^3)^2 ).

Original entry on oeis.org

1, 1, 2, 7, 24, 84, 313, 1209, 4769, 19166, 78253, 323570, 1352122, 5701467, 24229122, 103663575, 446163435, 1930390329, 8391341664, 36630504952, 160509484616, 705750073063, 3112865367660, 13769327908980, 61066953746400, 271488240652950, 1209671359828154
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+x^3)^2)/x)
    
  • PARI
    a(n, s=3, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(2*n-3*k,n-3*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x) * (1+x^3)^2 )^(n+1). - Seiichi Manyama, Feb 14 2024

A073187 Triangle of C(n+1,k)*C(2*n-3*k,n-3*k)/(n+1) by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 5, 42, 21, 132, 84, 3, 429, 330, 28, 1430, 1287, 180, 4862, 5005, 990, 12, 16796, 19448, 5005, 165, 58786, 75582, 24024, 1430, 208012, 293930, 111384, 10010, 55, 742900, 1144066, 503880, 61880, 1001, 2674440, 4457400, 2238390
Offset: 1

Views

Author

Michael Somos, Jul 19 2002

Keywords

Examples

			1;
1;
2;
5,  1;
14, 5;
42, 21;
132, 84, 3;
429, 330, 28;
1430, 1287, 180; ...
		

Crossrefs

Row sums give A071969.

Programs

  • Mathematica
    T[n_, k_]:= If[k < 0 || k > n/3, 0, Binomial[n + 1, k]*Binomial[2*n - 3*k, n - 3*k]/(n + 1)]; Table[T[n, k], {n,0,10}, {k,0,Floor[n/3]}]//Flatten (* G. C. Greubel, May 29 2018 *)
  • PARI
    alias(C,binomial); T(n,k)=if(k<0 || k>n/3,0,C(n+1,k)*C(2*n-3*k,n-3*k)/(n+1))

A365267 G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + x^3*A(x)).

Original entry on oeis.org

1, 1, 2, 5, 15, 47, 153, 513, 1763, 6177, 21981, 79224, 288611, 1061019, 3931320, 14666135, 55041855, 207668702, 787225265, 2996851140, 11452198368, 43915195973, 168930713580, 651708006690, 2520840672423, 9774511167507, 37985839339052
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*n-5*k+1, n-3*k)/(2*n-5*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*n-5*k+1,n-3*k)/(2*n-5*k+1).

A366025 Expansion of (1/x) * Series_Reversion( x*(1-x)/(1+x^5) ).

Original entry on oeis.org

1, 1, 2, 5, 14, 43, 139, 465, 1595, 5577, 19804, 71228, 258946, 950030, 3513050, 13079920, 48993149, 184490361, 698020080, 2652192675, 10115878915, 38717526745, 148655862210, 572412768275, 2209969761924, 8553073927858, 33176952295730, 128960722306128
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[x(1-x)/(1+x^5),{x,0,28}],x]/x,x] (* Stefano Spezia, Sep 26 2023 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k, k)*binomial(2*n-5*k+1, n-4*k)/(2*n-5*k+1));
    
  • PARI
    Vec(serreverse(x*(1-x)/(1+x^5)+O(x^30))/x) \\ Michel Marcus, Sep 26 2023

Formula

G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + x^4*A(x)^3).
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k,k) * binomial(2*n-5*k+1,n-4*k)/(2*n-5*k+1) = (1/(n+1)) * Sum_{k=0..floor(n/5)} binomial(n+1,k) * binomial(2*n-5*k,n-5*k).
Showing 1-10 of 13 results. Next