A356734
Heinz numbers of integer partitions with at least one neighborless part.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 78, 79, 80, 81, 82, 83
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
These partitions are counted by
A356236.
A003963 multiplies together the prime indices of n.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Function[ptn,Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS]
A356842
Numbers k such that the k-th composition in standard order does not cover an interval of positive integers (not gapless).
Original entry on oeis.org
9, 12, 17, 19, 24, 25, 28, 33, 34, 35, 39, 40, 48, 49, 51, 56, 57, 60, 65, 66, 67, 69, 70, 71, 73, 76, 79, 80, 81, 88, 96, 97, 98, 99, 100, 103, 104, 112, 113, 115, 120, 121, 124, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145
Offset: 1
The terms and their corresponding standard compositions begin:
9: (3,1)
12: (1,3)
17: (4,1)
19: (3,1,1)
24: (1,4)
25: (1,3,1)
28: (1,1,3)
33: (5,1)
34: (4,2)
35: (4,1,1)
39: (3,1,1,1)
40: (2,4)
48: (1,5)
49: (1,4,1)
51: (1,3,1,1)
56: (1,1,4)
57: (1,1,3,1)
60: (1,1,1,3)
See link for sequences related to standard compositions.
These compositions are counted by the complement of
A107428.
A356233 counts factorizations into gapless numbers.
A356844 ranks compositions with at least one 1.
-
nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],!nogapQ[stc[#]]&]
A367402
Number of integer partitions of n whose semi-sums cover an interval of positive integers.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 9, 10, 13, 17, 20, 26, 31, 38, 44, 58, 64, 81, 95, 116, 137, 166, 192, 233, 278, 330, 385, 459, 542, 636, 759, 879, 1038, 1211, 1418, 1656, 1942, 2242, 2618, 3029, 3535, 4060, 4735, 5429, 6299, 7231, 8346, 9556, 11031, 12593, 14482, 16525
Offset: 0
The partition y = (3,2,1,1) has semi-sums {2,3,4,5}, which is an interval, so y is counted under a(7).
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(1111) (2111) (222) (322) (71)
(11111) (321) (2221) (332)
(2211) (3211) (2222)
(21111) (22111) (3221)
(111111) (211111) (22211)
(1111111) (32111)
(221111)
(2111111)
(11111111)
The complement is counted by
A367403.
A000009 counts partitions covering an initial interval, ranks
A055932.
A086971 counts semi-sums of prime indices.
A261036 counts complete partitions by maximum.
-
Table[Length[Select[IntegerPartitions[n], (d=Total/@Subsets[#,{2}];If[d=={}, {}, Range[Min@@d,Max@@d]]==Union[d])&]], {n,0,15}]
A367403
Number of integer partitions of n whose semi-sums do not cover an interval of positive integers.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 2, 5, 9, 13, 22, 30, 46, 63, 91, 118, 167, 216, 290, 374, 490, 626, 810, 1022, 1297, 1628, 2051, 2551, 3176, 3929, 4845, 5963, 7311, 8932, 10892, 13227, 16035, 19395, 23397, 28156, 33803, 40523, 48439, 57832, 68876, 81903, 97212, 115198
Offset: 0
The a(0) = 0 through a(9) = 13 partitions:
. . . . . (311) (411) (331) (422) (441)
(3111) (421) (431) (522)
(511) (521) (531)
(4111) (611) (621)
(31111) (3311) (711)
(4211) (4311)
(5111) (5211)
(41111) (6111)
(311111) (33111)
(42111)
(51111)
(411111)
(3111111)
The complement is counted by
A367402.
A000009 counts partitions covering an initial interval, ranks
A055932.
A086971 counts semi-sums of prime indices.
A261036 counts complete partitions by maximum.
-
Table[Length[Select[IntegerPartitions[n], (d=Total/@Subsets[#,{2}];If[d=={}, {}, Range[Min@@d,Max@@d]]!=Union[d])&]], {n,0,15}]
A367410
Number of strict integer partitions of n whose semi-sums cover an interval of positive integers.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 4, 4, 6, 6, 7, 7, 8, 8, 11, 9, 11, 11, 12, 12, 15, 14, 15, 16, 16, 16, 19, 18, 19, 22, 21, 21, 24, 22, 25, 26, 26, 26, 30, 28, 29, 32, 31, 32, 37, 35, 36, 38, 39, 39, 43, 42, 43, 47, 46, 49, 51, 52, 51, 58
Offset: 0
The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is not counted under a(7).
The a(1) = 1 through a(9) = 6 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (5,4)
(4,1) (5,1) (5,2) (6,2) (6,3)
(3,2,1) (6,1) (7,1) (7,2)
(8,1)
(4,3,2)
For parts instead of sums we have
A001227:
The non-strict complement is
A367403.
The complement is counted by
A367411.
A000009 counts partitions covering an initial interval, ranks
A055932.
A046663 counts partitions w/o submultiset summing to k, strict
A365663.
A365543 counts partitions w/ submultiset summing to k, strict
A365661.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#,{2}]; If[d=={},{}, Range[Min@@d, Max@@d]]==Union[d])&]], {n,0,30}]
A367411
Number of strict integer partitions of n whose semi-sums do not cover an interval of positive integers.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 4, 5, 8, 10, 14, 16, 23, 27, 35, 42, 52, 61, 75, 89, 106, 126, 149, 173, 204, 237, 274, 319, 369, 424, 490, 560, 642, 734, 838, 952, 1085, 1231, 1394, 1579, 1784, 2011, 2269, 2554, 2872, 3225, 3619, 4054, 4540, 5077, 5671, 6332
Offset: 0
The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is counted under a(7).
The a(7) = 1 through a(13) = 10 partitions:
(4,2,1) (4,3,1) (5,3,1) (5,3,2) (5,4,2) (6,4,2) (6,4,3)
(5,2,1) (6,2,1) (5,4,1) (6,3,2) (6,5,1) (6,5,2)
(6,3,1) (6,4,1) (7,3,2) (7,4,2)
(7,2,1) (7,3,1) (7,4,1) (7,5,1)
(8,2,1) (8,3,1) (8,3,2)
(9,2,1) (8,4,1)
(5,4,2,1) (9,3,1)
(6,3,2,1) (10,2,1)
(6,4,2,1)
(7,3,2,1)
For parts instead of sums we have
A238007:
The non-strict complement is
A367402.
The complement is counted by
A367410.
A000009 counts partitions covering an initial interval, ranks
A055932.
A046663 counts partitions w/o submultiset summing to k, strict
A365663.
A365543 counts partitions w/ submultiset summing to k, strict
A365661.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#, {2}];If[d=={},{}, Range[Min@@d,Max@@d]]!=Union[d])&]], {n,0,30}]
A137795
Smallest positive m such that m*n is free of prime gaps in canonical factorization.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 1, 1, 1, 3, 5, 105, 1, 1, 1, 1155, 1, 15, 1, 1, 1, 1, 35, 15015, 1, 1, 1, 255255, 385, 3, 1, 5, 1, 105, 1, 4849845, 1, 1, 1, 3, 5005, 1155, 1, 1, 7, 15, 85085, 111546435, 1, 1, 1, 3234846615, 5, 1, 77, 35, 1, 15015, 1616615, 3, 1, 1
Offset: 1
n=42: A073490(42) = A073490([2*3]*[7]) = 1,
the gap is filled by a(42) = 5: A073490(42*5) = 0.
-
A137795(n) = if(1==n,1, my(f = factor(n), p = f[1, 1], gpf = f[#f~, 1], m = 1); while(pAntti Karttunen, Sep 06 2018
A356736
Heinz numbers of integer partitions with no neighborless parts.
Original entry on oeis.org
1, 6, 12, 15, 18, 24, 30, 35, 36, 45, 48, 54, 60, 72, 75, 77, 90, 96, 105, 108, 120, 135, 143, 144, 150, 162, 175, 180, 192, 210, 216, 221, 225, 240, 245, 270, 288, 300, 315, 323, 324, 360, 375, 384, 385, 405, 420, 432, 437, 450, 462, 480, 486, 525, 539, 540
Offset: 1
The terms together with their prime indices begin:
1: {}
6: {1,2}
12: {1,1,2}
15: {2,3}
18: {1,2,2}
24: {1,1,1,2}
30: {1,2,3}
35: {3,4}
36: {1,1,2,2}
45: {2,2,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
60: {1,1,2,3}
72: {1,1,1,2,2}
75: {2,3,3}
77: {4,5}
90: {1,2,2,3}
96: {1,1,1,1,1,2}
These partitions are counted by
A355394.
The singleton case is the complement of
A356237.
A003963 multiplies together the prime indices of n.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Function[ptn,!Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS]
A356846
Number of integer compositions of n into parts not covering an interval of positive integers.
Original entry on oeis.org
0, 0, 0, 0, 2, 5, 11, 25, 57, 115, 236, 482, 978, 1986, 4003, 8033, 16150, 32402, 64943, 130207, 260805, 522123, 1045168, 2091722, 4185431, 8374100, 16753538, 33515122, 67042865, 134106640, 268246886, 536549760, 1073194999, 2146553011, 4293391411, 8587283895
Offset: 0
The a(0) = 0 through a(6) = 8 compositions:
. . . . (13) (14) (15)
(31) (41) (24)
(113) (42)
(131) (51)
(311) (114)
(141)
(411)
(1113)
(1131)
(1311)
(3111)
-
gappyQ[m_]:=And[m!={},Union[m]!=Range[Min[m],Max[m]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],gappyQ]],{n,0,15}]
A137723
First occurrence of a set of n consecutive numbers having at least one prime gap in their factorization: a(n) = smallest number of this set.
Original entry on oeis.org
10, 33, 20, 55, 84, 114, 390, 513, 182, 200, 468, 2941, 774, 65522, 1832, 1261, 1130, 1332, 1638, 524289, 1952, 4298, 4524, 69960, 5120, 16385, 2972, 4832, 5352, 10801, 5592
Offset: 1
a(5) = 84: #{84, 85, 86, 87, 88} = 5,
84=[7]*[3*2^2], 84+1=19*5, 84+2=43*2, 84+3=29*3, 84+4=11*2^3.
Comments