A210494
Biharmonic numbers: numbers m such that ( Hd(m)+Cd(m) )/2 is an integer, where Hd(m) and Cd(m) are the harmonic mean and the contraharmonic (or antiharmonic) mean of the divisors of m.
Original entry on oeis.org
1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 119, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
Offset: 1
Bruno Berselli, Oct 03 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Bruno Berselli)
- Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, The Biharmonic mean, arXiv:1601.03081 [math.NT], 2016, pages 6-14.
- Umberto Cerruti, Numeri Armonici e Numeri Perfetti (in Italian), 2013. The sequence is on page 13.
-
a210494 n = a210494_list !! (n-1)
a210494_list = filter
(\x -> (a001157 x + a038040 x) `mod` a074400 x == 0) [1..]
-- Reinhard Zumkeller, Jan 21 2014
-
IsInteger := func; [n: n in [1..300] | IsInteger((n*NumberOfDivisors(n)+DivisorSigma(2,n))/(2*SumOfDivisors(n)))];
-
with(numtheory); P:=proc(q) local a,k,n;
for n from 1 to q do a:=divisors(n);
if type((n*tau(n)+add(a[k]^2,k=1..nops(a)))/(2*sigma(n)),integer) then print(n); fi; od; end; P(1000); # Paolo P. Lava, Oct 11 2013
-
B[n_] := (n DivisorSigma[0, n] + DivisorSigma[2, n])/(2 DivisorSigma[1, n]); Select[Range[300], IntegerQ[B[#]] &]
-
isok(n) = denominator((n*sigma(n,0) + sigma(n,2))/(2*sigma(n)))==1; \\ Michel Marcus, Jan 14 2016
A246857
Numbers k such that sigma(k + sigma(k)) = 2*sigma(k).
Original entry on oeis.org
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 329, 359, 413, 419, 431, 443, 491, 509, 593, 623, 641, 653, 659, 683, 719, 743, 761, 809, 869, 911, 953, 979, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451
Offset: 1
Composite number 329 (with sigma(329) = 384) is in sequence because sigma(329+sigma(329)) = sigma(713) = 768 = 2*384.
Prime 359 (with sigma(359) = 360) is in sequence because sigma(359+sigma(359)) = sigma(719) = 720 = 2*360.
-
[n:n in[1..10000] | SumOfDivisors(n+SumOfDivisors(n)) eq 2*SumOfDivisors(n)]
-
Select[Range[1500], DivisorSigma[1, # + DivisorSigma[1, #]] == 2 DivisorSigma[1, #] &] (* Michael De Vlieger, Aug 05 2021 *)
-
select(n -> sigma(n+sigma(n))==2*sigma(n),[1..1000]) \\ Edward Jiang, Sep 05 2014
A272400
Square array read by antidiagonals upwards in which T(n,k) is the product of the n-th noncomposite number and the sum of the divisors of k, n>=1, k>=1.
Original entry on oeis.org
1, 2, 3, 3, 6, 4, 5, 9, 8, 7, 7, 15, 12, 14, 6, 11, 21, 20, 21, 12, 12, 13, 33, 28, 35, 18, 24, 8, 17, 39, 44, 49, 30, 36, 16, 15, 19, 51, 52, 77, 42, 60, 24, 30, 13, 23, 57, 68, 91, 66, 84, 40, 45, 26, 18, 29, 69, 76, 119, 78, 132, 56, 75, 39, 36, 12, 31, 87, 92, 133, 102, 156, 88, 105, 65, 54, 24, 28
Offset: 1
The corner of the square array begins:
1, 3, 4, 7, 6, 12, 8, 15, 13, 18...
2, 6, 8, 14, 12, 24, 16, 30, 26, 36...
3, 9, 12, 21, 18, 36, 24, 45, 39, 54...
5, 15, 20, 35, 30, 60, 40, 75, 65, 90...
7, 21, 28, 49, 42, 84, 56, 105, 91, 126...
11, 33, 44, 77, 66, 132, 88, 165, 143, 198...
13, 39, 52, 91, 78, 156, 104, 195, 169, 234...
17, 51, 68, 119, 102, 204, 136, 255, 221, 306...
19, 57, 76, 133, 114, 228, 152, 285, 247, 342...
23, 69, 92, 161, 138, 276, 184, 345, 299, 414...
...
-
Table[If[# == 1, 1, Prime[# - 1]] DivisorSigma[1, k] &@(n - k + 1), {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Apr 28 2016 *)
A325299
a(n) = 9 * sigma(n).
Original entry on oeis.org
9, 27, 36, 63, 54, 108, 72, 135, 117, 162, 108, 252, 126, 216, 216, 279, 162, 351, 180, 378, 288, 324, 216, 540, 279, 378, 360, 504, 270, 648, 288, 567, 432, 486, 432, 819, 342, 540, 504, 810, 378, 864, 396, 756, 702, 648, 432, 1116, 513, 837, 648, 882, 486, 1080, 648, 1080, 720, 810, 540, 1512
Offset: 1
-
List([1..70],n->9*Sigma(n)); # After Muniru A Asiru
-
with(numtheory): seq(9*sigma(n), n=1..64);
-
9*DivisorSigma[1,Range[70]] (* After Harvey P. Dale *)
-
a(n) = 9 * sigma(n);
A246858
Composite numbers k such that sigma(k + sigma(k)) = 2*sigma(k).
Original entry on oeis.org
329, 413, 623, 869, 979, 1819, 2585, 3107, 3173, 3197, 3887, 4235, 4997, 5771, 6149, 6187, 6443, 7409, 8399, 8759, 14429, 15323, 18515, 19019, 21181, 21413, 23989, 26491, 29749, 30355, 31043, 32623, 34009, 34177, 39737, 47321, 47845, 51389, 53311, 56419
Offset: 1
Number 329 (with sigma(329) = 384) is in sequence because sigma(329 + sigma(329)) = sigma(713) = 768 = 2*384.
-
[n:n in[1..1000] | SumOfDivisors(n+SumOfDivisors(n)) eq 2*SumOfDivisors(n) and not IsPrime(n)]
-
Select[Range[57000], And[CompositeQ[#], DivisorSigma[1, # + DivisorSigma[1, #]] == 2 DivisorSigma[1, #]] &] (* Michael De Vlieger, Aug 05 2021 *)
-
lista(nn) = {forcomposite(n=2, nn, if (sigma(n+sigma(n)) == 2*sigma(n), print1(n, ", ")););} \\ Michel Marcus, Sep 05 2014
A248881
Numbers n such that lambda(sum of even divisors of 2n) = lambda(sum of odd divisors of 2n) where lambda is the Carmichael function (A002322).
Original entry on oeis.org
1, 3, 5, 6, 9, 11, 13, 17, 18, 19, 25, 26, 27, 29, 36, 37, 38, 41, 43, 45, 49, 50, 53, 54, 59, 61, 63, 65, 67, 68, 72, 73, 74, 75, 81, 82, 83, 85, 86, 87, 89, 90, 95, 97, 98, 99, 100, 101, 103, 107, 109, 113, 117, 121, 122, 125, 126, 130, 131, 134, 137, 139
Offset: 1
18 is in the sequence because A002322(A074400(18))= A002322(78)= 12 and because A002322(A000593(18)) = A002322(13) = 12.
-
lst={};f[x_] := Plus @@ Select[Divisors[x], OddQ[#] &]; g[x_] := Plus @@ Select[Divisors[x], EvenQ[#]&]; Do[If[CarmichaelLambda[f[n]]== CarmichaelLambda[g[n]], AppendTo[lst,n/2]], {n, 1, 500}];lst
-
a002322(n) = lcm(znstar(n)[2]);
isok(n) = my(sod = sumdiv(2*n, d, d*(d%2))); my(sed = sigma(2*n) - sod); sod && sed && (a002322(sod) == a002322(sed)); \\ Michel Marcus, Mar 07 2015
A326122
a(n) = 10 * sigma(n).
Original entry on oeis.org
10, 30, 40, 70, 60, 120, 80, 150, 130, 180, 120, 280, 140, 240, 240, 310, 180, 390, 200, 420, 320, 360, 240, 600, 310, 420, 400, 560, 300, 720, 320, 630, 480, 540, 480, 910, 380, 600, 560, 900, 420, 960, 440, 840, 780, 720, 480, 1240, 570, 930, 720, 980, 540, 1200, 720, 1200, 800, 900, 600, 1680, 620, 960
Offset: 1
-
List([1..70],n->10*Sigma(n)); # After Muniru A Asiru
-
[10*DivisorSigma(1, n): n in [1..70]]; // Vincenzo Librandi, Jul 26 2019
-
with(numtheory): seq(10*sigma(n), n=1..64);
-
10*DivisorSigma[1,Range[70]] (* After Harvey P. Dale *)
-
a(n) = 10 * sigma(n);
A348412
Numbers whose even divisors have an integer harmonic mean.
Original entry on oeis.org
2, 6, 12, 30, 56, 84, 168, 270, 280, 540, 616, 840, 992, 1092, 1344, 2856, 2976, 3276, 3780, 4590, 5320, 5940, 7560, 12400, 12420, 14880, 16256, 16380, 18848, 24360, 26784, 36036, 37200, 37240, 41664, 48768, 49140, 55692, 60480, 65520, 86304, 86800, 111720, 128520
Offset: 1
6 is a term since its even divisors are 2 and 6, and their harmonic mean, 1/((1/2 + 1/6)/2) = 3, is an integer.
-
Select[Range[2, 10^5, 2], IntegerQ[HarmonicMean[Select[Divisors[#], EvenQ]]] &]
-
isok(m) = if (! (m%2), my(d=select(x->!(x%2), divisors(m))); denominator(#d/sum(k=1, #d, 1/d[k])) == 1); \\ Michel Marcus, Oct 31 2021
-
from sympy import gcd, divisor_sigma
A348412_list = [2*n for n in range(1,10**3) if (lambda x, y: 2*gcd(x,y*n)>=x)(divisor_sigma(n),divisor_sigma(n,0))] # Chai Wah Wu, Oct 20 2021
A171642
Non-deficient numbers with odd sigma such that the sum of the even divisors is twice the sum of the odd divisors.
Original entry on oeis.org
18, 162, 450, 882, 1458, 2178, 2450, 3042, 4050, 5202, 6050, 6498, 7938, 8450, 9522, 11250, 13122, 15138, 17298, 19602, 22050, 24642, 27378, 30258, 33282, 36450, 39762, 43218, 46818, 50562, 54450, 58482, 61250, 62658, 66978, 71442, 76050, 80802, 85698
Offset: 1
Divisors(18) = {1, 2, 3, 6, 9, 18}, sigma(18) = 39, and 2 + 6 + 18 = 2*(1 + 3 + 9).
-
with(numtheory): A171642 := proc(n) local k,s,a;
s := sigma(n); a := add(k,k=select(x->type(x,odd),divisors(n)));
if 3*a = s and 2*n <= s and type(s,odd) then n else NULL fi end:
-
from sympy import divisors
A171642 = []
for n in range(1, 10**5):
d = divisors(n)
s = sum(d)
if s % 2 and 2*n <= s and s == 3*sum([x for x in d if x % 2]):
A171642.append(n)
# Chai Wah Wu, Aug 20 2014
A235671
Triangle read by rows in which row n lists the proper divisors of n in increasing order, 2n, and the proper divisors of n in decreasing order.
Original entry on oeis.org
2, 1, 4, 1, 1, 6, 1, 1, 2, 8, 2, 1, 1, 10, 1, 1, 2, 3, 12, 3, 2, 1, 1, 14, 1, 1, 2, 4, 16, 4, 2, 1, 1, 3, 18, 3, 1, 1, 2, 5, 20, 5, 2, 1, 1, 22, 1, 1, 2, 3, 4, 6, 24, 6, 4, 3, 2, 1, 1, 26, 1, 1, 2, 7, 28, 7, 2, 1, 1, 3, 5, 30, 5, 3, 1, 1, 2, 4, 8, 32, 8, 4, 2, 1
Offset: 1
The irregular triangle begins:
2;
1, 4, 1;
1, 6, 1;
1, 2, 8, 2, 1;
1, 10, 1;
1, 2, 3, 12, 3, 2, 1;
1, 14, 1;
1, 2, 4, 16, 4, 2, 1;
1, 3, 18, 3, 1;
1, 2, 5, 20, 5, 2, 1;
1, 22, 1;
1, 2, 3, 4, 6, 24, 6, 4, 3, 2, 1;
...
Also:
1;
1/2, 2, 1/2;
1/2, 3, 1/2;
1/2, 1, 4, 1, 1/2;
1/2, 5, 1/2;
1/2, 1, 3/2, 6, 3/2, 1, 1/2;
1/2, 7, 1/2;
1/2, 1, 2, 8, 2, 1, 1/2;
1/2, 3/2, 9, 3/2, 1/2;
1/2, 1, 5/2, 10, 5/2, 1, 1/2;
1/2, 11, 1/2;
1/2, 1, 3/2, 2, 3, 12, 3, 2, 3/2, 1, 1/2;
...
Cf.
A000005,
A001065,
A027750,
A056538,
A074400,
A000203,
A114002,
A114003,
A236104,
A237591,
A237593,
A237270,
A233772,
A233773.
-
pd[n_]:=Module[{d=Most[Divisors[n]]},Flatten[Join[{d,{2n},Reverse[d]}]]]; Flatten[Array[pd,20]] (* Harvey P. Dale, Dec 22 2014 *)
Comments