cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A227575 Largest prime factor of 7^n + 1.

Original entry on oeis.org

2, 2, 5, 43, 1201, 191, 181, 911, 169553, 117307, 4021, 10746341, 1201, 228511817, 13564461457, 6568801, 47072139617, 29078814248401, 13841169553, 4058036683, 810221830361, 309079, 83960385389, 3421093417510114543, 33232924804801, 79787519018560501
Offset: 0

Views

Author

Michel Marcus, Aug 22 2013

Keywords

Examples

			7^12 + 1 = 2*73*193*409*1201, so a(12) = 1201.
		

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(7^n+1)): n in [0..30]]; // Bruno Berselli, Aug 23 2013
  • Mathematica
    Table[FactorInteger[7^n + 1][[-1, 1]], {n, 0, 30}] (* Bruno Berselli, Aug 23 2013 *)
  • PARI
    a(n) = f = factor(7^n + 1); f[#f~, 1]; \\ Michel Marcus, Aug 22 2013
    

Formula

a(n) = A006530(A034491(n)). - Vincenzo Librandi, Jul 12 2016

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 12 2016
a(101)-a(372) in b-file from Amiram Eldar, Feb 02 2020
a(373)-a(387) in b-file from Max Alekseyev, Apr 25 2022, Aug 30 2023

A366609 Smallest prime dividing 4^n + 1.

Original entry on oeis.org

2, 5, 17, 5, 257, 5, 17, 5, 65537, 5, 17, 5, 97, 5, 17, 5, 641, 5, 17, 5, 257, 5, 17, 5, 193, 5, 17, 5, 257, 5, 17, 5, 274177, 5, 17, 5, 97, 5, 17, 5, 65537, 5, 17, 5, 257, 5, 17, 5, 641, 5, 17, 5, 257, 5, 17, 5, 449, 5, 17, 5, 97, 5, 17, 5, 59649589127497217
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

A366720 Largest prime factor of 12^n+1.

Original entry on oeis.org

2, 13, 29, 19, 233, 19141, 20593, 13063, 260753, 1801, 85403261, 57154490053, 2227777, 222379, 13156924369, 35671, 1200913648289, 66900193189411, 122138321401, 905265296671, 67657441, 1885339, 68368660537, 49489630860836437, 592734049, 438472201
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[12^n + 1][[-1, 1]], {n, 0, 20}]

Formula

a(n) = A006530(A178248(n)). - Paul F. Marrero Romero, Dec 07 2023

A063271 Largest prime factor of 9^(2n)+1 (A063270).

Original entry on oeis.org

2, 41, 193, 6481, 21523361, 42521761, 769, 647753, 926510094425921, 282429005041, 128653413121, 56625998353, 24127552321, 37644053098601, 36214795668330833, 42521761, 1716841910146256242328924544641, 3833564416504313, 56227703611393, 278733912072436804273
Offset: 0

Views

Author

Jason Earls, Jul 12 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[9^(2n)+1][[-1,1]],{n,0,20}] (* Harvey P. Dale, Jan 07 2013 *)
  • PARI
    a(n)={vecmax(factor(9^(2*n) + 1)[,1])} \\ Harry J. Smith, Aug 20 2009

Formula

a(n) = A006530(A063270(n)) = A002592(2*n) = A074476(4*n). - Daniel Suteu, May 26 2022

Extensions

Definition corrected by Harry J. Smith, Aug 20 2009

A189240 Least number k such that 2*k*n + 1 is a prime dividing 3^n + 1.

Original entry on oeis.org

1, 1, 5, 6, 6, 39, 1, 1, 59, 3, 270, 15330, 1, 1, 672605, 3, 2, 75, 1, 1, 125, 511647711, 2, 3, 1, 360, 7691, 9, 796056, 111, 14476720225405, 1, 14064, 5355114024, 90, 249, 69757, 1, 180
Offset: 2

Views

Author

Michel Lagneau, Apr 19 2011

Keywords

Comments

The smallest prime factor of 3^n+1 of the form 2k*n+1 is A189241(n).

Examples

			a(4) = 5 because 3^4+1 = 2*41 => the smallest prime divisor of the form  2k*n+1 is 41 = 2*5*4+1.
		

Crossrefs

Cf. A189241, A074476 (largest prime factor of 3^n + 1)

Programs

  • Mathematica
    Table[p=First/@FactorInteger[3^n+1]; (Select[p, Mod[#1, n] == 1 &, 1][[1]]
      - 1)/(2n), {n, 2, 40}]
  • PARI
    a(n)=forstep(K=2*n+1,3^n+1,2*n,if(Mod(3,K)^n==0,return((k-1)/2/n))) \\ Charles R Greathouse IV, May 15 2013

A189241 Smallest prime factor of 3^n+1 having the form 2*k*n+1.

Original entry on oeis.org

5, 7, 41, 61, 73, 547, 17, 19, 1181, 67, 6481, 398581, 29, 31, 21523361, 103, 73, 2851, 41, 43, 5501, 23535794707, 97, 151, 53, 19441, 430697, 523, 47763361, 6883, 926510094425921, 67, 956353, 374857981681, 6481, 18427, 5301533, 79, 14401
Offset: 2

Views

Author

Michel Lagneau, Apr 19 2011

Keywords

Comments

The values of k are in A189240.

Examples

			a(4) = 41 because 3^4 + 1 = 2 * 41 ; the smallest prime divisor of the form  2*k*n+1 is 41 = 2*5*4+1.
		

Crossrefs

Cf. A189240, A074476 (largest prime factor of 3^n + 1).

Programs

  • Mathematica
    Table[p=First/@FactorInteger[3^n+1]; Select[p, Mod[#1, n] == 1 &, 1][[1]],
      {n, 2, 40}]

A324941 Largest prime factor of 17^n + 1.

Original entry on oeis.org

2, 3, 29, 13, 41761, 101, 83233, 22796593, 184417, 5653, 63541, 87415373, 72337, 2001793, 100688449, 238212511, 52548582913, 45957792327018709121, 382069, 20352763, 1186844128302568601, 88109799136087, 6901823633, 1109309383381084655697725873, 48661191868691111041
Offset: 0

Views

Author

Vincenzo Librandi, Apr 05 2019

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(17^n + 1)): n in [0..40]];
    
  • Mathematica
    Table[FactorInteger[17^n + 1] [[-1,1]], {n, 0, 30}]
  • PARI
    a(n) = vecmax(factor(17^n+1)[, 1]); \\ Jinyuan Wang, Apr 05 2019

Formula

a(n) = A006530(A224384(n)).

A167205 a(n) = (3^n+1)/(3-(-1)^n).

Original entry on oeis.org

1, 1, 5, 7, 41, 61, 365, 547, 3281, 4921, 29525, 44287, 265721, 398581, 2391485, 3587227, 21523361, 32285041, 193710245, 290565367, 1743392201, 2615088301, 15690529805, 23535794707, 141214768241, 211822152361, 1270932914165
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 30 2009

Keywords

Comments

This sequence is (3^n + 1) divided by the highest possible power of 2, which is 4 for odd n and 2 for even n. It is never divisible by 8 or any higher power of 2, which implies Levi ben Gerson's observation that (3^n + 1 = 2^k) has no solution for n > 1. Cf. the comments and links to A235365. - Joe Slater, Apr 02 2017

Crossrefs

Programs

  • GAP
    List([0..27],n->(3^n+1)/(3-(-1)^n)); # Muniru A Asiru, Mar 05 2018
  • Maple
    a:=n->(3^n+1)/(3-(-1)^n): seq(a(n),n=0..27); # Muniru A Asiru, Mar 05 2018
  • Mathematica
    CoefficientList[Series[(1+x-5x^2-3x^3)/((1+x)(1-x)(1+3x)(1-3x)), {x,0,30}],x] (* or *) LinearRecurrence[{0,10,0,-9},{1,1,5,7},30] (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    a(n) = (3^n+1)/(3-(-1)^n); \\ Altug Alkan, Mar 05 2018
    

Formula

a(n) = 10*a(n-2) - 9*a(n-4).
G.f.: (1 + x - 5*x^2 - 3*x^3)/((1+x)*(1-x)*(1+3*x)*(1-3*x)).
a(n) = numerator((1/4)^n + (3/4)^n), n > 0.
Previous Showing 11-18 of 18 results.