cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A105809 Riordan array (1/(1 - x - x^2), x/(1 - x)).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 5, 7, 7, 4, 1, 8, 12, 14, 11, 5, 1, 13, 20, 26, 25, 16, 6, 1, 21, 33, 46, 51, 41, 22, 7, 1, 34, 54, 79, 97, 92, 63, 29, 8, 1, 55, 88, 133, 176, 189, 155, 92, 37, 9, 1, 89, 143, 221, 309, 365, 344, 247, 129, 46, 10, 1, 144, 232, 364, 530, 674, 709, 591
Offset: 0

Views

Author

Paul Barry, May 04 2005

Keywords

Comments

Previous name was: A Fibonacci-Pascal matrix.
From Wolfdieter Lang, Oct 04 2014: (Start)
In the column k of this triangle (without leading zeros) is the k-fold iterated partial sums of the Fibonacci numbers, starting with 1. A000045(n+1), A000071(n+3), A001924(n+1), A014162(n+1), A014166(n+1), ..., n >= 0. See the Riordan property.
For a combinatorial interpretation of these iterated partial sums see the H. Belbachir and A. Belkhir link. There table 1 shows in the rows these columns. In their notation (with r = k) f^(k)(n) = T(k, n+k).
The A-sequence of this Riordan triangle is [1, 1] (see the recurrence for T(n, k), k >= 1, given in the formula section). The Z-sequence is A165326 = [1, repeat(1, -1)]. See the W. Lang link under A006232 for Riordan A- and Z-sequences. (End)

Examples

			The triangle T(n,k) begins:
n\k   0   1   2    3    4    5    6    7    8   9  10 11 12 13 ...
0:    1
1:    1   1
2:    2   2   1
3:    3   4   3    1
4:    5   7   7    4    1
5:    8  12  14   11    5    1
6:   13  20  26   25   16    6    1
7:   21  33  46   51   41   22    7    1
8:   34  54  79   97   92   63   29    8    1
9:   55  88 133  176  189  155   92   37    9   1
10:  89 143 221  309  365  344  247  129   46  10   1
11: 144 232 364  530  674  709  591  376  175  56  11  1
12: 233 376 596  894 1204 1383 1300  967  551 231  67 12  1
13: 377 609 972 1490 2098 2587 2683 2267 1518 782 298 79 13  1
... reformatted and extended - _Wolfdieter Lang_, Oct 03 2014
------------------------------------------------------------------
Recurrence from Z-sequence (see a comment above): 8 = T(0,5) = (+1)*5 + (+1)*7 + (-1)*7 + (+1)*4 + (-1)*1 = 8. - _Wolfdieter Lang_, Oct 04 2014
		

Crossrefs

Cf. A165326 (Z-sequence), A027934 (row sums), A010049(n+1) (antidiagonal sums), A212804 (alternating row sums), inverse is A105810.
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A109906, A111006, A114197, A162741, A228074.

Programs

  • Haskell
    a105809 n k = a105809_tabl !! n !! k
    a105809_row n = a105809_tabl !! n
    a105809_tabl = map fst $ iterate
       (\(u:_, vs) -> (vs, zipWith (+) ([u] ++ vs) (vs ++ [0]))) ([1], [1,1])
    -- Reinhard Zumkeller, Aug 15 2013
  • Maple
    T := (n,k) -> `if`(n=0,1,binomial(n,k)*hypergeom([1,k/2-n/2,k/2-n/2+1/2], [k+1,-n], -4)); for n from 0 to 13 do seq(simplify(T(n,k)),k=0..n) od; # Peter Luschny, Oct 10 2014
  • Mathematica
    T[n_, k_] := Sum[Binomial[n-j, k+j], {j, 0, n}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Jean-François Alcover, Jun 11 2019 *)

Formula

Riordan array (1/(1-x-x^2), x/(1-x)).
Triangle T(n, k) = Sum_{j=0..n} binomial(n-j, k+j); T(n, 0) = A000045(n+1);
T(n, m) = T(n-1, m-1) + T(n-1, m).
T(n, k) = Sum_{j=0..n} binomial(j, n+k-j). - Paul Barry, Oct 23 2006
G.f. of row polynomials Sum_{k=0..n} T(n, k)*x^k is (1 - z)/((1 - z - z^2)*(1 - (1 + x)*z)) (Riordan property). - Wolfdieter Lang, Oct 04 2014
T(n, k) = binomial(n, k)*hypergeom([1, k/2 - n/2, k/2 - n/2 + 1/2],[k + 1, -n], -4) for n > 0. - Peter Luschny, Oct 10 2014
From Wolfdieter Lang, Feb 13 2025: (Start)
Array A(k, n) = Sum_{j=0..n} F(j+1)*binomial(k-1+n-j, k-1), k >= 0, n >= 0, with F = A000045, (from Riordan triangle k-th convolution in columns without leading 0s).
A(k, n) = F(n+1+2*k) - Sum_{j=0..k-1} F(2*(k-j)-1) * binomial(n+1+j, j), (from iteration of partial sums).
Triangle T(n, k) = A(k, n-k) = Sum_{j=k..n} F(n-j+1) * binomial(j-1, k-1), 0 <= k <= n.
T(n, k) = F(n+1+k) - Sum_{j=0..k-1} F(2*(k-j)-1) * binomial(n - (k-1-j), j). (End)
T(n, k) = A027926(n, n+k), for 0 <= k <= n. - Wolfdieter Lang, Mar 08 2025

Extensions

Use first formula as a more descriptive name, Joerg Arndt, Jun 08 2021

A111006 Another version of Fibonacci-Pascal triangle A037027.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 5, 0, 0, 0, 3, 10, 8, 0, 0, 0, 1, 9, 20, 13, 0, 0, 0, 0, 4, 22, 38, 21, 0, 0, 0, 0, 1, 14, 51, 71, 34, 0, 0, 0, 0, 0, 5, 40, 111, 130, 55, 0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89, 0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144
Offset: 0

Views

Author

Philippe Deléham, Oct 02 2005

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Row sums are the Jacobsthal numbers A001045(n+1) and column sums form Pell numbers A000129.
Maximal column entries: A038149 = {1, 1, 2, 5, 10, 22, ...}.
T(n,k) gives a convolved Fibonacci sequence (A001629, A001872, ...).
Triangle read by rows: T(n,n-k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)). - Philippe Deléham, Feb 17 2014
Diagonal sums are A013979(n). - Philippe Deléham, Feb 17 2014
T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and 1 X 2 tiles. - Emeric Deutsch, Aug 14 2014

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 2, 3;
  0, 0, 1, 5,  5;
  0, 0, 0, 3, 10,  8;
  0, 0, 0, 1,  9, 20, 13;
  0, 0, 0, 0,  4, 22, 38,  21;
  0, 0, 0, 0,  1, 14, 51,  71,  34;
  0, 0, 0, 0,  0,  5, 40, 111, 130,  55;
  0, 0, 0, 0,  0,  1, 20, 105, 233, 235,  89;
  0, 0, 0, 0,  0,  0,  6,  65, 256, 474, 420, 144;
		

Crossrefs

Cf. A000045, A000129, A001045, A037027, A038112, A038149, A084938, A128100 (reversed version).
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.

Programs

  • Haskell
    a111006 n k = a111006_tabl !! n !! k
    a111006_row n = a111006_tabl !! n
    a111006_tabl =  map fst $ iterate (\(us, vs) ->
       (vs, zipWith (+) (zipWith (+) ([0] ++ us ++ [0]) ([0,0] ++ us))
                        ([0] ++ vs))) ([1], [0,1])
    -- Reinhard Zumkeller, Aug 15 2013

Formula

T(0, 0) = 1, T(n, k) = 0 for k < 0 or for n < k, T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-2, k-2).
T(n, k) = A037027(k, n-k). T(n, n) = A000045(n+1). T(3n, 2n) = (n+1)*A001002(n+1) = A038112(n).
G.f.: 1/(1-yx(1-x)-x^2*y^2). - Paul Barry, Oct 04 2005
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A053524(n+1), (-1)^n*A083858(n+1), (-1)^n*A002605(n), A033999(n), A000007(n), A001045(n+1), A083099(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 02 2006
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 respectively. - Philippe Deléham, Feb 17 2014

A114197 A Pascal-Fibonacci triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 31, 21, 6, 1, 1, 7, 31, 61, 61, 31, 7, 1, 1, 8, 43, 106, 142, 106, 43, 8, 1, 1, 9, 57, 169, 286, 286, 169, 57, 9, 1, 1, 10, 73, 253, 520, 659, 520, 253, 73, 10, 1
Offset: 0

Views

Author

Paul Barry, Nov 16 2005

Keywords

Comments

T(2n,n) is A114198. Row sums are A114199. Row sums of inverse are 0^n.

Examples

			Triangle begins
  1;
  1,   1;
  1,   2,   1;
  1,   3,   3,   1;
  1,   4,   7,   4,   1;
  1,   5,  13,  13,   5,   1;
  1,   6,  21,  31,  21,   6,   1;
  1,   7,  31,  61,  61,  31,   7,   1;
  1,   8,  43, 106, 142, 106,  43,   8,   1;
		

Crossrefs

Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.

Formula

As a number triangle, T(n,k) = Sum_{j=0..n-k} C(n-k, j)C(k, j)F(j);
As a number triangle, T(n,k) = Sum_{j=0..n} C(n-k, n-j)C(k, j-k)F(j-k);
As a number triangle, T(n,k) = Sum_{j=0..n} C(k, j)C(n-k, n-j)F(k-j) if k <= n, 0 otherwise.
As a square array, T(n,k) = Sum_{j=0..n} C(n, j)C(k, j)F(j);
As a square array, T(n,k) = Sum_{j=0..n+k} C(n, n+k-j)C(k, j-k)F(j-k);
Column k has g.f.: (Sum_{j=0..k} C(k, j)F(j+1)(x/(1-x))^j)*x^k/(1-x);
G.f.: -((x^2-x)*y-x+1)/((x^4+x^3-x^2)*y^2+(x^3-3*x^2+2*x)*y-x^2+2*x-1). - Vladimir Kruchinin, Jan 15 2018

A109906 A triangle based on A000045 and Pascal's triangle: T(n,m) = Fibonacci(n-m+1) * Fibonacci(m+1) * binomial(n,m).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 6, 6, 3, 5, 12, 24, 12, 5, 8, 25, 60, 60, 25, 8, 13, 48, 150, 180, 150, 48, 13, 21, 91, 336, 525, 525, 336, 91, 21, 34, 168, 728, 1344, 1750, 1344, 728, 168, 34, 55, 306, 1512, 3276, 5040, 5040, 3276, 1512, 306, 55, 89, 550, 3060, 7560, 13650, 16128, 13650, 7560, 3060, 550, 89
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 24 2008

Keywords

Comments

Row sums give A081057.

Examples

			Triangle T(n,k) begins:
   1;
   1,   1;
   2,   2,    2;
   3,   6,    6,    3;
   5,  12,   24,   12,     5;
   8,  25,   60,   60,    25,     8;
  13,  48,  150,  180,   150,    48,    13;
  21,  91,  336,  525,   525,   336,    91,   21;
  34, 168,  728, 1344,  1750,  1344,   728,  168,   34;
  55, 306, 1512, 3276,  5040,  5040,  3276, 1512,  306,  55;
  89, 550, 3060, 7560, 13650, 16128, 13650, 7560, 3060, 550, 89;
  ...
		

Crossrefs

Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A111006, A114197, A162741, A228074.

Programs

  • Haskell
    a109906 n k = a109906_tabl !! n !! k
    a109906_row n = a109906_tabl !! n
    a109906_tabl = zipWith (zipWith (*)) a058071_tabl a007318_tabl
    -- Reinhard Zumkeller, Aug 15 2013
  • Maple
    f:= n-> combinat[fibonacci](n+1):
    T:= (n, k)-> binomial(n, k)*f(k)*f(n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Apr 26 2023
  • Mathematica
    Clear[t, n, m] t[n_, m_] := Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

T(n,m) = Fibonacci(n-m+1)*Fibonacci(m+1)*binomial(n,m).
T(n,k) = A058071(n,k) * A007318(n,k). - Reinhard Zumkeller, Aug 15 2013

Extensions

Offset changed by Reinhard Zumkeller, Aug 15 2013

A108617 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k) for 0 < k < n, T(n,0) = T(n,n) = n-th Fibonacci number.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 3, 3, 2, 3, 5, 6, 5, 3, 5, 8, 11, 11, 8, 5, 8, 13, 19, 22, 19, 13, 8, 13, 21, 32, 41, 41, 32, 21, 13, 21, 34, 53, 73, 82, 73, 53, 34, 21, 34, 55, 87, 126, 155, 155, 126, 87, 55, 34, 55, 89, 142, 213, 281, 310, 281, 213, 142, 89, 55, 89, 144, 231, 355, 494, 591, 591, 494, 355, 231, 144, 89
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 12 2005

Keywords

Comments

Sum of n-th row = 2*A027934(n). - Reinhard Zumkeller, Oct 07 2012

Examples

			Triangle begins:
   0;
   1,   1;
   1,   2,   1;
   2,   3,   3,   2;
   3,   5,   6,   5,   3;
   5,   8,  11,  11,   8,   5;
   8,  13,  19,  22,  19,  13,   8;
  13,  21,  32,  41,  41,  32,  21,  13;
  21,  34,  53,  73,  82,  73,  53,  34,  21;
  34,  55,  87, 126, 155, 155, 126,  87,  55,  34;
  55,  89, 142, 213, 281, 310, 281, 213, 142,  89,  55;
		

Crossrefs

T(2n,n) gives 2*A176085(n).

Programs

  • Haskell
    a108617 n k = a108617_tabl !! n !! k
    a108617_row n = a108617_tabl !! n
    a108617_tabl = [0] : iterate f [1,1] where
       f row@(u:v:_) = zipWith (+) ([v - u] ++ row) (row ++ [v - u])
    -- Reinhard Zumkeller, Oct 07 2012
    
  • Magma
    function T(n,k) // T = A108617
      if k eq 0 or k eq n then return Fibonacci(n);
      else return T(n-1,k-1) + T(n-1,k);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 20 2023
    
  • Maple
    A108617 := proc(n,k) option remember;
        if k = 0 or k=n then
            combinat[fibonacci](n) ;
        elif k <0 or k > n then
            0 ;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Oct 05 2012
  • Mathematica
    a[1]:={0}; a[n_]:= a[n]= Join[{Fibonacci[#]}, Map[Total, Partition[a[#],2,1]], {Fibonacci[#]}]&[n-1]; Flatten[Map[a, Range[15]]] (* Peter J. C. Moses, Apr 11 2013 *)
  • SageMath
    def T(n,k): # T = A108617
        if (k==0 or k==n): return fibonacci(n)
        else: return T(n-1,k-1) + T(n-1,k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 20 2023

Formula

T(n,0) = T(n,n) = A000045(n);
T(n,1) = T(n,n-1) = A000045(n+1) for n>0;
T(n,2) = T(n,n-2) = A000045(n+2) - 2 = A001911(n-1) for n>1;
Sum_{k=0..n} T(n,k) = 2*A027934(n-1) for n>0.
Sum_{k=0..n} (-1)^k*T(n, k) = 2*((n+1 mod 2)*Fibonacci(n-2) + [n=0]). - G. C. Greubel, Oct 20 2023

A316938 Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+4).

Original entry on oeis.org

3, 5, 5, 8, 10, 8, 13, 18, 18, 13, 21, 31, 36, 31, 21, 34, 52, 67, 67, 52, 34, 55, 86, 119, 134, 119, 86, 55, 89, 141, 205, 253, 253, 205, 141, 89, 144, 230, 346, 458, 506, 458, 346, 230, 144, 233, 374, 576, 804, 964, 964, 804, 576, 374, 233, 377, 607, 950, 1380, 1768, 1928, 1768, 1380, 950, 607, 377
Offset: 0

Views

Author

Vincenzo Librandi, Jul 27 2018

Keywords

Comments

Row sums give A316937.

Examples

			Triangle begins:
    3;
    5,   5;
    8,  10,   8;
   13,  18,  18,  13;
   21,  31,  36,  31,  21;
   34,  52,  67,  67,  52,  34;
   55,  86, 119, 134, 119,  86,  55;
   89, 141, 205, 253, 253, 205, 141,  89;
  144, 230, 346, 458, 506, 458, 346, 230, 144;
...
		

Crossrefs

Cf. A000045 (Fibonacci numbers), A316937 (row sums).
Other Fibonacci borders: A074829, A108617, A316939.

Programs

  • Mathematica
    t={}; Do[r={}; Do[If[k==0||k==n, m=Fibonacci[n+4], m=t[[n,k]]+t[[n,k+1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t

A316939 Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+2).

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 5, 7, 7, 5, 8, 12, 14, 12, 8, 13, 20, 26, 26, 20, 13, 21, 33, 46, 52, 46, 33, 21, 34, 54, 79, 98, 98, 79, 54, 34, 55, 88, 133, 177, 196, 177, 133, 88, 55, 89, 143, 221, 310, 373, 373, 310, 221, 143, 89, 144, 232, 364, 531, 683, 746, 683, 531, 364, 232, 144, 233, 376, 596, 895, 1214, 1429
Offset: 0

Views

Author

Vincenzo Librandi, Jul 28 2018

Keywords

Examples

			Triangle begins:
   1;
   2,  2;
   3,  4,   3;
   5,  7,   7,   5;
   8, 12,  14,  12,   8;
  13, 20,  26,  26,  20,  13;
  21, 33,  46,  52,  46,  33,  21;
  34, 54,  79,  98,  98,  79,  54, 34;
  55, 88, 133, 177, 196, 177, 133, 88, 55;
  ...
		

Crossrefs

Cf. A316528 (row sums).
Columns k=0..2: A000045, A000071, A001924.
Other Fibonacci borders: A074829, A108617, A316938.

Programs

  • Maple
    f:= proc(n,k) option remember;
      if k=0 or k=n then combinat:-fibonacci(n+2) else procname(n-1,k)+procname(n-1,k-1) fi
    end proc:
    for n from 0 to 10 do
      seq(f(n,k),k=0..n)
    od; # Robert Israel, Sep 20 2018
  • Mathematica
    t={}; Do[r={}; Do[If[k==0||k==n, m=Fibonacci[n + 2], m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t // Flatten

Extensions

Incorrect g.f. removed by Georg Fischer, Feb 18 2020

A347584 Triangle formed by Pascal's rule, except that the n-th row begins and ends with the n-th Lucas number.

Original entry on oeis.org

2, 1, 1, 3, 2, 3, 4, 5, 5, 4, 7, 9, 10, 9, 7, 11, 16, 19, 19, 16, 11, 18, 27, 35, 38, 35, 27, 18, 29, 45, 62, 73, 73, 62, 45, 29, 47, 74, 107, 135, 146, 135, 107, 74, 47, 76, 121, 181, 242, 281, 281, 242, 181, 121, 76, 123, 197, 302, 423, 523, 562, 523, 423, 302, 197, 123
Offset: 0

Views

Author

Noah Carey and Greg Dresden, Sep 07 2021

Keywords

Comments

Similar in spirit to the Fibonacci-Pascal triangle A074829, which uses Fibonacci numbers instead of Lucas numbers at the ends of each row.
If we consider the top of the triangle to be the 0th row, then the sum of terms in n-th row is 2*(2^(n+1) - Lucas(n+1)). This sum also equals 2*A027973(n-1) for n>0.

Examples

			The first two Lucas numbers (for n=0 and n=1) are 2 and 1, so the first two rows (again, for n=0 and n=1) of the triangle are 2 and 1, 1 respectively.
Triangle begins:
               2;
             1,  1;
           3,  2,  3;
         4,  5,  5,  4;
       7,  9, 10,  9,  7;
    11, 16, 19, 19, 16, 11;
  18, 27, 35, 38, 35, 27, 18;
		

Crossrefs

Cf. A227550, A228196 (general formula).
Fibonacci borders: A074829, A108617, A316938, A316939.

Programs

  • Mathematica
    T[n_, 0] := LucasL[n]; T[n_, n_] := LucasL[n];
    T[n_, k_] := T[n - 1, k - 1] + T[n - 1, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

a(n) = 2*A074829(n+1) - A108617(n).

A379837 Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+3).

Original entry on oeis.org

2, 3, 3, 5, 6, 5, 8, 11, 11, 8, 13, 19, 22, 19, 13, 21, 32, 41, 41, 32, 21, 34, 53, 73, 82, 73, 53, 34, 55, 87, 126, 155, 155, 126, 87, 55, 89, 142, 213, 281, 310, 281, 213, 142, 89, 144, 231, 355, 494, 591, 591, 494, 355, 231, 144
Offset: 0

Views

Author

Vincenzo Librandi, Jan 26 2025

Keywords

Examples

			Triangle begins:
      k= 0   1   2  3    4   5   6
  n=0:   2;
  n=1:   3,  3;
  n=2:   5,  6,  5;
  n=3:   8, 11, 11, 8;
  n=4:  13, 19, 22, 19, 13;
  n=5:  21, 32, 41, 41, 32, 21;
  n=6:  34, 53, 73, 82, 73, 53, 34;
  ...
		

Crossrefs

Programs

  • Mathematica
    // As triangle // t={};Do[r={};Do[If[k==0||k==n,m=Fibonacci[n+3],m=t[[n,k]]+t[[n,k+1]]];r=AppendTo[r,m],{k,0,n}];AppendTo[t,r],{n,0,11}];t
Previous Showing 11-19 of 19 results.