A178630
a(n) = 18*((10^n - 1)/9)^2.
Original entry on oeis.org
18, 2178, 221778, 22217778, 2222177778, 222221777778, 22222217777778, 2222222177777778, 222222221777777778, 22222222217777777778, 2222222222177777777778, 222222222221777777777778, 22222222222217777777777778, 2222222222222177777777777778, 222222222222221777777777777778
Offset: 1
n=1: ..................... 18 = 9 * 2;
n=2: ................... 2178 = 99 * 22;
n=3: ................. 221778 = 999 * 222;
n=4: ............... 22217778 = 9999 * 2222;
n=5: ............. 2222177778 = 99999 * 22222;
n=6: ........... 222221777778 = 999999 * 222222;
n=7: ......... 22222217777778 = 9999999 * 2222222;
n=8: ....... 2222222177777778 = 99999999 * 22222222;
n=9: ..... 222222221777777778 = 999999999 * 222222222.
A178631
a(n) = 27*((10^n - 1)/9)^2.
Original entry on oeis.org
27, 3267, 332667, 33326667, 3333266667, 333332666667, 33333326666667, 3333333266666667, 333333332666666667, 33333333326666666667, 3333333333266666666667, 333333333332666666666667, 33333333333326666666666667, 3333333333333266666666666667, 333333333333332666666666666667
Offset: 1
n=1: ..................... 27 = 9 * 3;
n=2: ................... 3267 = 99 * 33;
n=3: ................. 332667 = 999 * 333;
n=4: ............... 33326667 = 9999 * 3333;
n=5: ............. 3333266667 = 99999 * 33333;
n=6: ........... 333332666667 = 999999 * 333333;
n=7: ......... 33333326666667 = 9999999 * 3333333;
n=8: ....... 3333333266666667 = 99999999 * 33333333;
n=9: ..... 333333332666666667 = 999999999 * 333333333.
-
[27*((10^n-1)/9)^2: n in [1..50]]; // Vincenzo Librandi, Dec 28 2010
-
27*(FromDigits/@Table[PadRight[{},n,1],{n,20}])^2 (* or *) LinearRecurrence[ {111,-1110,1000},{27,3267,332667},20] (* Harvey P. Dale, Oct 11 2012 *)
-
A178631(n):=27*((10^n-1)/9)^2$ makelist(A178631(n),n,1,10); /* Martin Ettl, Nov 12 2012 */
-
a(n)=27*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
A178632
a(n) = 45*((10^n - 1)/9)^2.
Original entry on oeis.org
45, 5445, 554445, 55544445, 5555444445, 555554444445, 55555544444445, 5555555444444445, 555555554444444445, 55555555544444444445, 5555555555444444444445, 555555555554444444444445, 55555555555544444444444445, 5555555555555444444444444445, 555555555555554444444444444445
Offset: 1
n=1: ..................... 45 = 9 * 5;
n=2: ................... 5445 = 99 * 55;
n=3: ................. 554445 = 999 * 555;
n=4: ............... 55544445 = 9999 * 5555;
n=5: ............. 5555444445 = 99999 * 55555;
n=6: ........... 555554444445 = 999999 * 555555;
n=7: ......... 55555544444445 = 9999999 * 5555555;
n=8: ....... 5555555444444445 = 99999999 * 55555555;
n=9: ..... 555555554444444445 = 999999999 * 555555555.
-
[45*((10^n-1)/9)^2: n in [1..50]]; // Vincenzo Librandi, Dec 28 2010
-
45 (FromDigits/@Table[PadRight[{}, n, 1], {n, 20}])^2 (* Vincenzo Librandi, Mar 20 2014 *)
LinearRecurrence[{111,-1110,1000},{45,5445,554445},20] (* Harvey P. Dale, Jan 23 2019 *)
-
A178632(n):=45*((10^n-1)/9)^2$ makelist(A178632(n),n,1,12); /* Martin Ettl, Nov 08 2012 */
-
a(n)=45*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
A178633
a(n) = 54*((10^n - 1)/9)^2.
Original entry on oeis.org
54, 6534, 665334, 66653334, 6666533334, 666665333334, 66666653333334, 6666666533333334, 666666665333333334, 66666666653333333334, 6666666666533333333334, 666666666665333333333334, 66666666666653333333333334, 6666666666666533333333333334, 666666666666665333333333333334
Offset: 1
n = 1: 54 = 9 * 6;
n = 2: 6534 = 99 * 66;
n = 3: 665334 = 999 * 666;
n = 4: 66653334 = 9999 * 6666;
n = 5: 6666533334 = 99999 * 66666;
n = 6: 666665333334 = 999999 * 666666;
n = 7: 66666653333334 = 9999999 * 6666666;
n = 8: 6666666533333334 = 99999999 * 66666666;
n = 9: 666666665333333334 = 999999999 * 666666666.
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
A178634
a(n) = 63*((10^n - 1)/9)^2.
Original entry on oeis.org
63, 7623, 776223, 77762223, 7777622223, 777776222223, 77777762222223, 7777777622222223, 777777776222222223, 77777777762222222223, 7777777777622222222223, 777777777776222222222223, 77777777777762222222222223, 7777777777777622222222222223, 777777777777776222222222222223
Offset: 1
n=1: ..................... 63 = 9 * 7;
n=2: ................... 7623 = 99 * 77;
n=3: ................. 776223 = 999 * 777;
n=4: ............... 77762223 = 9999 * 7777;
n=5: ............. 7777622223 = 99999 * 77777;
n=6: ........... 777776222223 = 999999 * 777777;
n=7: ......... 77777762222223 = 9999999 * 7777777;
n=8: ....... 7777777622222223 = 99999999 * 77777777;
n=9: ..... 777777776222222223 = 999999999 * 777777777.
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 33 at p. 62.
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
-
List([1..20], n -> 63*((10^n - 1)/9)^2); # G. C. Greubel, Jan 28 2019
-
[63*((10^n - 1)/9)^2: n in [1..20]]; // Vincenzo Librandi, Dec 28 2010
-
63((10^Range[15]-1)/9)^2 (* or *) Table[FromDigits[Join[PadRight[{},n,7],{6},PadRight[{},n,2],{3}]],{n,0,15}] (* Harvey P. Dale, Apr 23 2012 *)
-
a(n)=63*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
-
[63*((10^n - 1)/9)^2 for n in (1..20)] # G. C. Greubel, Jan 28 2019
A178635
a(n) = 72*((10^n - 1)/9)^2.
Original entry on oeis.org
72, 8712, 887112, 88871112, 8888711112, 888887111112, 88888871111112, 8888888711111112, 888888887111111112, 88888888871111111112, 8888888888711111111112, 888888888887111111111112, 88888888888871111111111112, 8888888888888711111111111112, 888888888888887111111111111112
Offset: 1
n=1: ..................... 72 = 9 * 8;
n=2: ................... 8712 = 99 * 88;
n=3: ................. 887112 = 999 * 888;
n=4: ............... 88871112 = 9999 * 8888;
n=5: ............. 8888711112 = 99999 * 88888;
n=6: ........... 888887111112 = 999999 * 888888;
n=7: ......... 88888871111112 = 9999999 * 8888888;
n=8: ....... 8888888711111112 = 99999999 * 88888888;
n=9: ..... 888888887111111112 = 999999999 * 888888888.
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
A102807
a(n) is the square of one plus the number consisting of n 3's.
Original entry on oeis.org
1, 16, 1156, 111556, 11115556, 1111155556, 111111555556, 11111115555556, 1111111155555556, 111111111555555556, 11111111115555555556, 1111111111155555555556, 111111111111555555555556, 11111111111115555555555556, 1111111111111155555555555556, 111111111111111555555555555556
Offset: 0
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 31 at p. 61.
- Italo Ghersi, Matematica dilettevole e curiosa, pp. 111-112, Hoepli, Milano, 1967. [Vincenzo Librandi, Dec 31 2008]
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Emile Fourrey, Récréations arithmétiques, Vuibert, 1899 and after, Paris, pages 72-73.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
-
a:= n-> (1+parse(cat(0, 3$n)))^2:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 03 2018
-
Table[(10^n + 2)^2/9, {n, 0, 20}] (* Paolo Xausa, Jun 26 2024 *)
A104264
Number of n-digit squares with no zero digits.
Original entry on oeis.org
3, 6, 19, 44, 136, 376, 1061, 2985, 8431, 24009, 67983, 193359, 549697, 1563545, 4446173, 12650545, 35999714, 102439796, 291532841, 829634988, 2360947327, 6719171580, 19122499510, 54423038535, 154888366195
Offset: 1
a(3) = #{121, 144, 169, 196, 225, 256, 289, 324, 361, 441, 484, 529, 576, 625, 676, 729, 784, 841, 961} = 19.
-
def aupton(terms):
c, k, kk = [0 for i in range(terms)], 1, 1
while kk < 10**terms:
s = str(kk)
c[len(s)-1], k, kk = c[len(s)-1] + (s.count('0')==0), k+1, kk + 2*k + 1
return c
print(aupton(14)) # Michael S. Branicky, Mar 06 2021
Original entry on oeis.org
0, 4, 484, 49284, 4937284, 493817284, 49382617284, 4938270617284, 493827150617284, 49382715950617284, 4938271603950617284, 493827160483950617284, 49382716049283950617284, 4938271604937283950617284, 493827160493817283950617284, 49382716049382617283950617284
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
-
I:=[0,4,484]; [n le 3 select I[n] else 111*Self(n-1)-1110*Self(n-2)+1000*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 25 2017
-
LinearRecurrence[{111, -1110, 1000}, {0, 4, 484}, 30] (* Vincenzo Librandi, Apr 25 2017 *)
Original entry on oeis.org
0, 16, 1936, 197136, 19749136, 1975269136, 197530469136, 19753082469136, 1975308602469136, 197530863802469136, 19753086415802469136, 1975308641935802469136, 197530864197135802469136, 19753086419749135802469136, 1975308641975269135802469136, 197530864197530469135802469136
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
Comments