cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A178630 a(n) = 18*((10^n - 1)/9)^2.

Original entry on oeis.org

18, 2178, 221778, 22217778, 2222177778, 222221777778, 22222217777778, 2222222177777778, 222222221777777778, 22222222217777777778, 2222222222177777777778, 222222222221777777777778, 22222222222217777777777778, 2222222222222177777777777778, 222222222222221777777777777778
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 18 = 9 * 2;
n=2: ................... 2178 = 99 * 22;
n=3: ................. 221778 = 999 * 222;
n=4: ............... 22217778 = 9999 * 2222;
n=5: ............. 2222177778 = 99999 * 22222;
n=6: ........... 222221777778 = 999999 * 222222;
n=7: ......... 22222217777778 = 9999999 * 2222222;
n=8: ....... 2222222177777778 = 99999999 * 22222222;
n=9: ..... 222222221777777778 = 999999999 * 222222222.
		

Crossrefs

Programs

Formula

a(n) = 18*A002477(n) = A002283(n)*A002276(n).
a(n)=((A002276(n-1)*10 + 1)*10^(n-1) + A002281(n-1))*10 + 8.
G.f.: 18*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
From Elmo R. Oliveira, Jul 30 2025: (Start)
E.g.f.: 2*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. (End)

A178631 a(n) = 27*((10^n - 1)/9)^2.

Original entry on oeis.org

27, 3267, 332667, 33326667, 3333266667, 333332666667, 33333326666667, 3333333266666667, 333333332666666667, 33333333326666666667, 3333333333266666666667, 333333333332666666666667, 33333333333326666666666667, 3333333333333266666666666667, 333333333333332666666666666667
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 27 = 9 * 3;
n=2: ................... 3267 = 99 * 33;
n=3: ................. 332667 = 999 * 333;
n=4: ............... 33326667 = 9999 * 3333;
n=5: ............. 3333266667 = 99999 * 33333;
n=6: ........... 333332666667 = 999999 * 333333;
n=7: ......... 33333326666667 = 9999999 * 3333333;
n=8: ....... 3333333266666667 = 99999999 * 33333333;
n=9: ..... 333333332666666667 = 999999999 * 333333333.
		

Crossrefs

Programs

  • Magma
    [27*((10^n-1)/9)^2: n in [1..50]]; // Vincenzo Librandi, Dec 28 2010
    
  • Mathematica
    27*(FromDigits/@Table[PadRight[{},n,1],{n,20}])^2 (* or *) LinearRecurrence[ {111,-1110,1000},{27,3267,332667},20] (* Harvey P. Dale, Oct 11 2012 *)
  • Maxima
    A178631(n):=27*((10^n-1)/9)^2$ makelist(A178631(n),n,1,10); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n)=27*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013

Formula

a(n) = 27*A002477(n) = A002283(n)*A002277(n).
a(n) = ((A002277(n-1)*10 + 2)*10^(n-1) + A002280(n-1))*10 + 7.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>3, a(1)=27, a(2)=3267, a(3)=332667. - Harvey P. Dale, Oct 11 2012
G.f.: 27*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: exp(x)*(1 - 2*exp(9*x) + exp(99*x))/3. - Elmo R. Oliveira, Aug 01 2025

A178632 a(n) = 45*((10^n - 1)/9)^2.

Original entry on oeis.org

45, 5445, 554445, 55544445, 5555444445, 555554444445, 55555544444445, 5555555444444445, 555555554444444445, 55555555544444444445, 5555555555444444444445, 555555555554444444444445, 55555555555544444444444445, 5555555555555444444444444445, 555555555555554444444444444445
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 45 = 9 * 5;
n=2: ................... 5445 = 99 * 55;
n=3: ................. 554445 = 999 * 555;
n=4: ............... 55544445 = 9999 * 5555;
n=5: ............. 5555444445 = 99999 * 55555;
n=6: ........... 555554444445 = 999999 * 555555;
n=7: ......... 55555544444445 = 9999999 * 5555555;
n=8: ....... 5555555444444445 = 99999999 * 55555555;
n=9: ..... 555555554444444445 = 999999999 * 555555555.
		

Crossrefs

Programs

Formula

a(n) = 45*A002477(n) = A002283(n)*A002279(n).
a(n) = (A002279(n-1)*10^n + A002278(n))*10 + 5.
G.f.: 45*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
From Elmo R. Oliveira, Aug 01 2025: (Start)
E.g.f.: 5*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. (End)

A178633 a(n) = 54*((10^n - 1)/9)^2.

Original entry on oeis.org

54, 6534, 665334, 66653334, 6666533334, 666665333334, 66666653333334, 6666666533333334, 666666665333333334, 66666666653333333334, 6666666666533333333334, 666666666665333333333334, 66666666666653333333333334, 6666666666666533333333333334, 666666666666665333333333333334
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n = 1:                   54 = 9 * 6;
n = 2:                 6534 = 99 * 66;
n = 3:               665334 = 999 * 666;
n = 4:             66653334 = 9999 * 6666;
n = 5:           6666533334 = 99999 * 66666;
n = 6:         666665333334 = 999999 * 666666;
n = 7:       66666653333334 = 9999999 * 6666666;
n = 8:     6666666533333334 = 99999999 * 66666666;
n = 9:   666666665333333334 = 999999999 * 666666666.
		

References

  • Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.

Crossrefs

Programs

Formula

a(n) = 54*A002477(n) = A002283(n)*A002280(n).
a(n) = ((A002280(n-1)*10 + 5)*10^(n-1) + A002277(n-1))*10 + 4 = (2/3)*(10^n - 1)^2.
From Colin Barker, Dec 07 2015: (Start)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>3.
G.f.: 54*x*(1+10*x)/((1-x)*(1-10*x)*(1-100*x)). (End)
E.g.f.: 2*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/3. - Elmo R. Oliveira, Aug 01 2025

A178634 a(n) = 63*((10^n - 1)/9)^2.

Original entry on oeis.org

63, 7623, 776223, 77762223, 7777622223, 777776222223, 77777762222223, 7777777622222223, 777777776222222223, 77777777762222222223, 7777777777622222222223, 777777777776222222222223, 77777777777762222222222223, 7777777777777622222222222223, 777777777777776222222222222223
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 63 = 9 * 7;
n=2: ................... 7623 = 99 * 77;
n=3: ................. 776223 = 999 * 777;
n=4: ............... 77762223 = 9999 * 7777;
n=5: ............. 7777622223 = 99999 * 77777;
n=6: ........... 777776222223 = 999999 * 777777;
n=7: ......... 77777762222223 = 9999999 * 7777777;
n=8: ....... 7777777622222223 = 99999999 * 77777777;
n=9: ..... 777777776222222223 = 999999999 * 777777777.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 33 at p. 62.
  • Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.

Crossrefs

Programs

  • GAP
    List([1..20], n -> 63*((10^n - 1)/9)^2); # G. C. Greubel, Jan 28 2019
  • Magma
    [63*((10^n - 1)/9)^2: n in [1..20]]; // Vincenzo Librandi, Dec 28 2010
    
  • Mathematica
    63((10^Range[15]-1)/9)^2 (* or *) Table[FromDigits[Join[PadRight[{},n,7],{6},PadRight[{},n,2],{3}]],{n,0,15}] (* Harvey P. Dale, Apr 23 2012 *)
  • PARI
    a(n)=63*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
    
  • Sage
    [63*((10^n - 1)/9)^2 for n in (1..20)] # G. C. Greubel, Jan 28 2019
    

Formula

a(n) = 63*A002477(n) = A002283(n)*A002281(n).
a(n) = ((A002281(n-1)*10 + 6)*10^(n-1) + A002276(n-1))*10 + 3.
G.f.: 63*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: 7*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9. - Stefano Spezia, Jul 31 2024
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. - Elmo R. Oliveira, Aug 01 2025

A178635 a(n) = 72*((10^n - 1)/9)^2.

Original entry on oeis.org

72, 8712, 887112, 88871112, 8888711112, 888887111112, 88888871111112, 8888888711111112, 888888887111111112, 88888888871111111112, 8888888888711111111112, 888888888887111111111112, 88888888888871111111111112, 8888888888888711111111111112, 888888888888887111111111111112
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 72 = 9 * 8;
n=2: ................... 8712 = 99 * 88;
n=3: ................. 887112 = 999 * 888;
n=4: ............... 88871112 = 9999 * 8888;
n=5: ............. 8888711112 = 99999 * 88888;
n=6: ........... 888887111112 = 999999 * 888888;
n=7: ......... 88888871111112 = 9999999 * 8888888;
n=8: ....... 8888888711111112 = 99999999 * 88888888;
n=9: ..... 888888887111111112 = 999999999 * 888888888.
		

References

  • Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.

Crossrefs

Programs

Formula

a(n) = 72*A002477(n) = A002283(n)*A002282(n).
a(n) = ((A002282(n-1)*10 + 7)*10^(n-1) + A002275(n-1))*10 + 2.
G.f.: 72*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
From Elmo R. Oliveira, Aug 01 2025: (Start)
E.g.f.: 8*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. (End)

A102807 a(n) is the square of one plus the number consisting of n 3's.

Original entry on oeis.org

1, 16, 1156, 111556, 11115556, 1111155556, 111111555556, 11111115555556, 1111111155555556, 111111111555555556, 11111111115555555556, 1111111111155555555556, 111111111111555555555556, 11111111111115555555555556, 1111111111111155555555555556, 111111111111111555555555555556
Offset: 0

Views

Author

Ron Knott, Feb 27 2005

Keywords

Comments

Old name was: The number (333...334)^2.
An infinite sequence of squares with no zeros in base 10.
a(n) = A104265(2n) for n > 0. - Chai Wah Wu, Mar 24 2020

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 31 at p. 61.
  • Italo Ghersi, Matematica dilettevole e curiosa, pp. 111-112, Hoepli, Milano, 1967. [Vincenzo Librandi, Dec 31 2008]

Crossrefs

Programs

  • Maple
    a:= n-> (1+parse(cat(0, 3$n)))^2:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 03 2018
  • Mathematica
    Table[(10^n + 2)^2/9, {n, 0, 20}] (* Paolo Xausa, Jun 26 2024 *)

Formula

From R. J. Mathar, Jan 06 2009: (Start)
a(n) = (100^n + 4*10^n + 4)/9.
G.f.: (1 - 95*x + 490*x^2)/((1-x)*(100*x-1)*(10*x-1)). (End)
E.g.f.: exp(x)*(4 + 4*exp(9*x) + exp(99*x))/9. - Stefano Spezia, Jul 31 2024

Extensions

New name from Alois P. Heinz, Sep 03 2018

A104264 Number of n-digit squares with no zero digits.

Original entry on oeis.org

3, 6, 19, 44, 136, 376, 1061, 2985, 8431, 24009, 67983, 193359, 549697, 1563545, 4446173, 12650545, 35999714, 102439796, 291532841, 829634988, 2360947327, 6719171580, 19122499510, 54423038535, 154888366195
Offset: 1

Views

Author

Reinhard Zumkeller and Ron Knott, Feb 26 2005

Keywords

Comments

Comments from David W. Wilson, Feb 26 2005: (Start)
"There are approximately s(d) = (10^d)^(1/2) - (10^(d-1))^(1/2) d-digit squares. A random d-digit number has the probability p(d) = (9/10)^(d-1) of being zeroless (exponent d-1 as opposed to d because the first digit is not zero). So we expect p(d)s(d) zeroless d-digit squares.
"For d = 1 through 12, we get (truncating): 1, 5, 15, 44, 127, 363, 1034, 2943, 8377, 23841, 67854, 193117, ... The elements grow approximately geometrically with limit ratio (9/10)*10^(1/2) = 2.846+.
"The same naive estimate can easily be generalize to k-th powers, giving the estimate s(d) = (10^d)^(1/k) - (10^(d-1))^(1/k) for d-digit k-th powers. p(d) remains the same. The resulting estimates have ratio (9/10)*10^(1/k).
"We should expect an infinite number of zeroless k-th powers when this ratio is >= 1, which it is for k <= 21. For k >= 22, the ratio is < 1 and we should expect a finite number of zeroless k-th powers." (End)

Examples

			a(3) = #{121, 144, 169, 196, 225, 256, 289, 324, 361, 441, 484, 529, 576, 625, 676, 729, 784, 841, 961} = 19.
		

Crossrefs

Programs

  • Python
    def aupton(terms):
      c, k, kk = [0 for i in range(terms)], 1, 1
      while kk < 10**terms:
        s = str(kk)
        c[len(s)-1], k, kk = c[len(s)-1] + (s.count('0')==0), k+1, kk + 2*k + 1
      return c
    print(aupton(14)) # Michael S. Branicky, Mar 06 2021

Extensions

a(14)-a(18) from Donovan Johnson, Nov 05 2009
a(19)-a(21) from Donovan Johnson, Mar 23 2011
a(22)-a(25) from Donovan Johnson, Jan 29 2013

A075411 Squares of A002276.

Original entry on oeis.org

0, 4, 484, 49284, 4937284, 493817284, 49382617284, 4938270617284, 493827150617284, 49382715950617284, 4938271603950617284, 493827160483950617284, 49382716049283950617284, 4938271604937283950617284, 493827160493817283950617284, 49382716049382617283950617284
Offset: 0

Views

Author

Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002

Keywords

Comments

A transformation of the Wonderful Demlo numbers (A002477).

Examples

			a(2) = 22^2 = 484.
		

Crossrefs

Programs

  • Magma
    I:=[0,4,484]; [n le 3 select I[n] else 111*Self(n-1)-1110*Self(n-2)+1000*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 25 2017
  • Mathematica
    LinearRecurrence[{111, -1110, 1000}, {0, 4, 484}, 30] (* Vincenzo Librandi, Apr 25 2017 *)

Formula

a(n) = A002276(n)^2 = (2*A002275(n))^2 = 4*A002275(n)^2.
From Chai Wah Wu, Apr 24 2017: (Start)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
G.f.: 4*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). (End)
a(n) = 4*(10^n - 1)^2/81. - Colin Barker, Apr 25 2017
From Elmo R. Oliveira, Jul 28 2025: (Start)
E.g.f.: 4*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/81.
a(n) = 4*A002477(n). (End)

A075413 Squares of A002278.

Original entry on oeis.org

0, 16, 1936, 197136, 19749136, 1975269136, 197530469136, 19753082469136, 1975308602469136, 197530863802469136, 19753086415802469136, 1975308641935802469136, 197530864197135802469136, 19753086419749135802469136, 1975308641975269135802469136, 197530864197530469135802469136
Offset: 0

Views

Author

Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002

Keywords

Comments

A transformation of the Wonderful Demlo numbers (A002477).

Examples

			a(2) = 44^2 = 1936.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(16*x*(1 + 10*x) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^20))) \\ Colin Barker, Jul 17 2019

Formula

a(n) = A002278(n)^2 = (4*A002275(n))^2 = 16*A002275(n)^2.
From Colin Barker, Jul 17 2019: (Start)
G.f.: 16*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
a(n) = 16*(10^n-1)^2/81. (End)
From Elmo R. Oliveira, Jul 29 2025: (Start)
E.g.f.: 16*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/81.
a(n) = 16*A002477(n). (End)
Previous Showing 11-20 of 26 results. Next