cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A370709 a(n) = 2^n * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/2).

Original entry on oeis.org

1, 2, 2, 20, 6, 108, 148, 776, -186, 5964, -4, 51032, -89700, 512120, -1259416, 6406032, -19733434, 78363148, -268823572, 1047941688, -3800035916, 14327505832, -52766730600, 199492430192, -746479735524, 2811936761016, -10588174502568, 40092283176560, -151796846803592
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 2*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 2^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 2*(2*x)^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Sqrt[QPochhammer[-2, x]/3], {x, 0, nmax}], x] * 2^Range[0, nmax]

Formula

G.f.: Product_{k>=1} (1 + 2*(2*x)^k)^(1/2).
a(n) ~ (-1)^(n+1) * c * 4^n / n^(3/2), where c = QPochhammer(-1/2)^(1/2) / (2*sqrt(Pi)) = 0.31039710860287467176143051675437...

A370716 a(n) = 3^(2*n) * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/3).

Original entry on oeis.org

1, 6, 18, 1170, -1890, 133326, 101250, 20498994, -164656314, 3778220862, -28085954094, 771567716970, -10691904063114, 183594050113518, -2711145260068326, 49416883617381354, -789899109743435994, 13176840267952166070, -216403389726994588086, 3681309971143060236810
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + 2*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^(2*Range[0, nmax])
    nmax = 20; CoefficientList[Series[Product[(1 + 2*(9*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
    nmax = 20; CoefficientList[Series[(QPochhammer[-2, x]/3)^(1/3), {x, 0, nmax}], x] * 3^(2*Range[0, nmax])

Formula

G.f.: Product_{k>=1} (1 + 2*(9*x)^k)^(1/3).
a(n) ~ (-1)^(n+1) * c * 18^n / n^(4/3), where c = QPochhammer(-1/2)^(1/3) / (3*Gamma(2/3)) = 0.2623638446186535909018671540030519...

A080267 a(n) = Sum_{d divides n} d*2^(n-n/d).

Original entry on oeis.org

1, 5, 13, 41, 81, 257, 449, 1313, 2497, 6465, 11265, 33665, 53249, 143617, 269313, 672257, 1114113, 3159041, 4980737, 13568001, 23904257, 57675777, 96468993, 275980289, 424673281, 1090535425, 1963720705, 4823482369, 7784628225
Offset: 1

Views

Author

Vladeta Jovovic, Feb 11 2003

Keywords

Crossrefs

Programs

  • Maple
    oo := 40; s1 := add( k*2^(k-1)*x^k/(1-2^(k-1)*x^k),k=1..oo): s2 := series(s1,x,oo-1): s3 := seriestolist(%): A080267 := n->s3[n+1];
  • Mathematica
    a[n_] := Sum[d*2^(n-n/d), {d, Divisors[n]}]; Array[a, 29] (* Jean-François Alcover, Mar 20 2014 *)
  • PARI
    a(n) = sumdiv(n, d, d*2^(n-n/d)); \\ Michel Marcus, Mar 20 2014
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(2*x)^k)^2)) \\ Seiichi Manyama, Dec 20 2022

Formula

G.f.: Sum_{k>=1} k*2^(k-1)*x^k/(1 - 2^(k-1)*x^k). - N. J. A. Sloane, Jun 04 2003
G.f.: Sum_{k>=1} x^k/(1 - (2 * x)^k)^2. - Seiichi Manyama, Dec 20 2022

A336133 Number of ways to split a strict integer partition of n into contiguous subsequences with strictly increasing sums.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 11, 14, 17, 22, 26, 35, 40, 51, 60, 75, 86, 109, 124, 153, 175, 214, 243, 297, 336, 403, 456, 546, 614, 731, 821, 975, 1095, 1283, 1437, 1689, 1887, 2195, 2448, 2851, 3172, 3676, 4083, 4724, 5245, 6022, 6677, 7695, 8504, 9720
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(9) = 9 splittings:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (4,2)    (4,3)    (5,3)    (5,4)
                          (4,1)  (5,1)    (5,2)    (6,2)    (6,3)
                                 (3,2,1)  (6,1)    (7,1)    (7,2)
                                          (4,2,1)  (4,3,1)  (8,1)
                                                   (5,2,1)  (4,3,2)
                                                            (5,3,1)
                                                            (6,2,1)
                                                            (4),(3,2)
The first splitting with more than two blocks is (8),(7,6),(5,4,3,2) under n = 35.
		

Crossrefs

The version with equal sums is A318683.
The version with strictly decreasing sums is A318684.
The version with weakly decreasing sums is A319794.
The version with different sums is A336132.
Starting with a composition gives A304961.
Starting with a non-strict partition gives A336134.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],Less@@Total/@#&]],{ctn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,30}]

A336136 Number of ways to split an integer partition of n into contiguous subsequences with weakly increasing sums.

Original entry on oeis.org

1, 1, 3, 5, 11, 15, 31, 40, 73, 98, 158, 204, 340, 420, 629, 819, 1202, 1494, 2174, 2665, 3759, 4688, 6349, 7806, 10788, 13035, 17244, 21128, 27750, 33499, 43941, 52627, 67957, 81773, 103658, 124047, 158628, 187788, 235162, 280188, 349612, 413120, 513952, 604568
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(5) = 15 splittings:
  (1)  (2)      (3)          (4)              (5)
       (1,1)    (2,1)        (2,2)            (3,2)
       (1),(1)  (1,1,1)      (3,1)            (4,1)
                (1),(1,1)    (2,1,1)          (2,2,1)
                (1),(1),(1)  (2),(2)          (3,1,1)
                             (1,1,1,1)        (2,1,1,1)
                             (2),(1,1)        (2),(2,1)
                             (1),(1,1,1)      (1,1,1,1,1)
                             (1,1),(1,1)      (2),(1,1,1)
                             (1),(1),(1,1)    (1),(1,1,1,1)
                             (1),(1),(1),(1)  (1,1),(1,1,1)
                                              (1),(1),(1,1,1)
                                              (1),(1,1),(1,1)
                                              (1),(1),(1),(1,1)
                                              (1),(1),(1),(1),(1)
		

Crossrefs

The version with weakly decreasing sums is A316245.
The version with equal sums is A317715.
The version with strictly increasing sums is A336134.
The version with strictly decreasing sums is A336135.
The version with different sums is A336131.
Starting with a composition gives A075900.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],LessEqual@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]
  • PARI
    a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f && r >= t && t >= s, self()(r,m,t,0,0)) + self()(r,m-1,s,t,0) + self()(r-m,min(m,r-m),s,t+m,1))); recurse(n,n,0,0)} \\ Andrew Howroyd, Jan 18 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 18 2024

A336142 Number of ways to choose a strict composition of each part of a strict integer partition of n.

Original entry on oeis.org

1, 1, 1, 4, 6, 11, 22, 41, 72, 142, 260, 454, 769, 1416, 2472, 4465, 7708, 13314, 23630, 40406, 68196, 119646, 203237, 343242, 586508, 993764, 1677187, 2824072, 4753066, 7934268, 13355658, 22229194, 36945828, 61555136, 102019156, 168474033, 279181966
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(1) = 1 through a(5) = 11 ways:
  (1)  (2)  (3)      (4)        (5)
            (1,2)    (1,3)      (1,4)
            (2,1)    (3,1)      (2,3)
            (2),(1)  (3),(1)    (3,2)
                     (1,2),(1)  (4,1)
                     (2,1),(1)  (3),(2)
                                (4),(1)
                                (1,2),(2)
                                (1,3),(1)
                                (2,1),(2)
                                (3,1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of partitions are A323583.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 g(n$2):
    seq(a(n), n=0..38);  # Alois P. Heinz, Jul 31 2020
  • Mathematica
    strptn[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Join@@Table[Tuples[Join@@Permutations/@strptn[#]&/@ctn],{ctn,strptn[n]}]],{n,0,20}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0,
         If[n == 0, p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]];
    g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, 0,
         If[n == 0, 1, g[n, i-1] + b[i, i, 0]*g[n-i, Min[n-i, i-1]]]];
    a[n_] := g[n, n];
    a /@ Range[0, 38] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)

Formula

G.f.: Product_{k >= 1} (1 + A032020(k)*x^k).

A300520 Expansion of Product_{k>=1} 1 / (1 - Fibonacci(k)*x^k).

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 31, 57, 113, 212, 410, 757, 1464, 2684, 5083, 9380, 17569, 32120, 59977, 109193, 202046, 367951, 675541, 1224453, 2243795, 4052369, 7377243, 13314989, 24140198, 43406515, 78510429, 140800279, 253663615, 454352111, 815790813, 1457485309
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-Fibonacci[k]*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

log(a(n)) ~ log(phi)*n + 2*sqrt(polylog(2, 1/sqrt(5))*n) - 3*(log(n)/4), where polylog(2, 1/sqrt(5)) = 0.5107013915606224266804289751265205446721... and phi = A001622 = (1 + sqrt(5))/2 is the golden ratio.

A327548 Total number of compositions in the compositions of partitions of n.

Original entry on oeis.org

0, 1, 4, 11, 34, 85, 248, 603, 1630, 4017, 10308, 24855, 63210, 150141, 369936, 882083, 2135606, 5023689, 12064092, 28167919, 66828418, 155569685, 364983208, 844175675, 1971322574, 4533662817, 10498550260, 24077361031, 55432615194, 126492183213, 289997946944
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2019

Keywords

Examples

			a(3) = 11 = 1+1+1+1+2+2+3 counts the compositions in 3, 21, 12, 111, 2|1, 11|1, 1|1|1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
          b(n, i-1)+(p->p+[0, p[1]])(2^(i-1)*b(n-i, min(n-i, i)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..32);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, b[n, i - 1] + With[{p = 2^(i - 1) b[n - i, Min[n - i, i]]}, p + {0, p[[1]]}]]];
    a[n_] := b[n, n][[2]];
    a /@ Range[0, 32] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A327549(n,k).
a(n) ~ log(2) * (3/(Pi^2 - 6*log(2)^2))^(1/4) * 2^(n-1) * exp(sqrt((Pi^2 - 6*log(2)^2)*n/3)) / (sqrt(Pi) * n^(1/4)). - Vaclav Kotesovec, Sep 19 2019

A327549 Number T(n,k) of compositions of partitions of n with exactly k compositions; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 8, 8, 2, 1, 0, 16, 16, 8, 2, 1, 0, 32, 48, 24, 8, 2, 1, 0, 64, 96, 64, 24, 8, 2, 1, 0, 128, 256, 160, 80, 24, 8, 2, 1, 0, 256, 512, 448, 192, 80, 24, 8, 2, 1, 0, 512, 1280, 1024, 576, 224, 80, 24, 8, 2, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2019

Keywords

Examples

			T(3,1) = 4: 3, 21, 12, 111.
T(3,2) = 2: 2|1, 11|1.
T(3,3) = 1: 1|1|1.
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,    1;
  0,   4,    2,    1;
  0,   8,    8,    2,   1;
  0,  16,   16,    8,   2,   1;
  0,  32,   48,   24,   8,   2,  1;
  0,  64,   96,   64,  24,   8,  2,  1;
  0, 128,  256,  160,  80,  24,  8,  2, 1;
  0, 256,  512,  448, 192,  80, 24,  8, 2, 1;
  0, 512, 1280, 1024, 576, 224, 80, 24, 8, 2, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A011782 (for n>0), A134353(n-2) (for n>1).
Row sums give A075900.
T(2n,n) gives A327550.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+expand(2^(i-1)*x*b(n-i, min(n-i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + 2^(i-1) x b[n-i, Min[n-i, i]]]];
    T[n_] := CoefficientList[b[n, n], x];
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A327548(n).

A337299 Expansion of Product_{k>0} (1 - 2^(k-1)*x^k).

Original entry on oeis.org

1, -1, -2, -2, -4, 0, -8, 16, 0, 64, 64, 384, 0, 1536, 1024, 3072, 2048, 16384, -8192, 49152, -32768, 32768, -65536, 262144, -1835008, 524288, -3145728, -6291456, -18874368, -4194304, -117440512, -16777216, -301989888, -469762048, -671088640, -805306368, -6710886400, 536870912
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2020

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = 2^(n-1).

Crossrefs

Convolution inverse of A075900.

Programs

  • Mathematica
    m = 37; CoefficientList[Series[Product[1 - 2^(k - 1)*x^k, {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Aug 22 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(prod(k=1, N, 1-2^(k-1)*x^k))
Previous Showing 31-40 of 46 results. Next