A320629
Products of odd primes of nonprime index.
Original entry on oeis.org
1, 7, 13, 19, 23, 29, 37, 43, 47, 49, 53, 61, 71, 73, 79, 89, 91, 97, 101, 103, 107, 113, 131, 133, 137, 139, 149, 151, 161, 163, 167, 169, 173, 181, 193, 197, 199, 203, 223, 227, 229, 233, 239, 247, 251, 257, 259, 263, 269, 271, 281, 293, 299, 301, 307, 311
Offset: 1
The sequence of terms begins:
1 = 1
7 = prime(4)
13 = prime(6)
19 = prime(8)
23 = prime(9)
29 = prime(10)
37 = prime(12)
43 = prime(14)
47 = prime(15)
49 = prime(4)^2
53 = prime(16)
61 = prime(18)
71 = prime(20)
73 = prime(21)
79 = prime(22)
89 = prime(24)
91 = prime(4)*prime(6)
97 = prime(25)
101 = prime(26)
103 = prime(27)
107 = prime(28)
113 = prime(30)
131 = prime(32)
133 = prime(4)*prime(8)
137 = prime(33)
139 = prime(34)
149 = prime(35)
151 = prime(36)
161 = prime(4)*prime(9)
Cf.
A000040,
A006450,
A007821,
A018252,
A056239,
A076610,
A112798,
A302242,
A320533,
A320628,
A320630,
A320631,
A320633.
A064988
Multiplicative with a(p^e) = prime(p)^e.
Original entry on oeis.org
1, 3, 5, 9, 11, 15, 17, 27, 25, 33, 31, 45, 41, 51, 55, 81, 59, 75, 67, 99, 85, 93, 83, 135, 121, 123, 125, 153, 109, 165, 127, 243, 155, 177, 187, 225, 157, 201, 205, 297, 179, 255, 191, 279, 275, 249, 211, 405, 289, 363, 295, 369, 241, 375, 341, 459, 335, 327
Offset: 1
a(12) = a(2^2*3) = prime(2)^2 * prime(3) = 3^2*5 = 45, where prime(n) = A000040(n).
Cf.
A076610 (terms sorted into ascending order).
-
a:= n-> mul(ithprime(i[1])^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..70); # Alois P. Heinz, Sep 06 2018
-
Table[If[n == 1, 1, Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 1 :> Prime[p]^e]], {n, 58}] (* Michael De Vlieger, Aug 22 2017 *)
-
{ for (n=1, 1000, f=factor(n)~; a=1; for (i=1, length(f), a*=prime(f[1, i])^f[2, i]); write("b064988.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009
-
a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = prime(f[k, 1]);); factorback(f);} \\ Michel Marcus, Aug 08 2017
-
from sympy import factorint, prime
from operator import mul
def a(n): return 1 if n==1 else reduce(mul, [prime(p)**e for p, e in factorint(n).items()])
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Aug 08 2017
-
(define (A064988 n) (if (= 1 n) n (* (A000040 (A020639 n)) (A064988 (A032742 n))))) ;; Antti Karttunen, Aug 08 2017
A330945
Numbers whose prime indices are not all prime numbers.
Original entry on oeis.org
2, 4, 6, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 84, 86, 87
Offset: 1
The sequence of terms together with their prime indices of prime indices begins:
2: {{}}
4: {{},{}}
6: {{},{1}}
7: {{1,1}}
8: {{},{},{}}
10: {{},{2}}
12: {{},{},{1}}
13: {{1,2}}
14: {{},{1,1}}
16: {{},{},{},{}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
26: {{},{1,2}}
28: {{},{},{1,1}}
29: {{1,3}}
Complement of
A076610 (products of primes of prime index).
Numbers n such that
A330944(n) > 0.
The restriction to odd terms is
A330946.
The restriction to nonprimes is
A330948.
The number of prime prime indices is given by
A257994.
The number of nonprime prime indices is given by
A330944.
Primes of nonprime index are
A007821.
Products of primes of nonprime index are
A320628.
The set S of numbers whose prime indices do not all belong to S is
A324694.
Cf.
A000040,
A000720,
A001222,
A018252,
A056239,
A112798,
A302242,
A320633,
A330943,
A330947,
A330949.
A355743
Numbers whose prime indices are all prime-powers.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, 27, 31, 33, 35, 41, 45, 49, 51, 53, 55, 57, 59, 63, 67, 69, 75, 77, 81, 83, 85, 93, 95, 97, 99, 103, 105, 109, 115, 119, 121, 123, 125, 127, 131, 133, 135, 147, 153, 155, 157, 159, 161, 165, 171, 175, 177, 179, 187
Offset: 1
The terms together with their prime indices begin:
1: {}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
31: {11}
33: {2,5}
35: {3,4}
41: {13}
45: {2,2,3}
The case of only primes (not all prime-powers) is
A076610, strict
A302590.
Allowing prime index 1 gives
A302492.
These are the products of elements of
A302493.
Requiring n to be a prime-power gives
A302601.
These are the positions of 1's in
A355741.
A001222 counts prime-power divisors.
A034699 gives maximal prime-power divisor.
A355742 chooses a prime-power divisor of each prime index.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],And@@PrimePowerQ/@primeMS[#]&]
A302590
Squarefree numbers whose prime indices are prime numbers.
Original entry on oeis.org
1, 3, 5, 11, 15, 17, 31, 33, 41, 51, 55, 59, 67, 83, 85, 93, 109, 123, 127, 155, 157, 165, 177, 179, 187, 191, 201, 205, 211, 241, 249, 255, 277, 283, 295, 327, 331, 335, 341, 353, 367, 381, 401, 415, 431, 451, 461, 465, 471, 509, 527, 537, 545, 547, 561, 563
Offset: 1
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
001: {}
003: {{1}}
005: {{2}}
011: {{3}}
015: {{1},{2}}
017: {{4}}
031: {{5}}
033: {{1},{3}}
041: {{6}}
051: {{1},{4}}
055: {{2},{3}}
059: {{7}}
067: {{8}}
083: {{9}}
085: {{2},{4}}
093: {{1},{5}}
109: {{10}}
123: {{1},{6}}
127: {{11}}
155: {{2},{5}}
157: {{12}}
165: {{1},{2},{3}}
Cf.
A000961,
A001222,
A003963,
A005117,
A006450,
A007716,
A056239,
A076610,
A275024,
A281113,
A302242,
A302243,
A302568.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[600],SquareFreeQ[#]&&And@@PrimeQ/@primeMS[#]&]
-
ok(n)={issquarefree(n) && !#select(p->!isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018
A355742
Number of ways to choose a sequence of prime-power divisors, one of each prime index of n. Product of bigomega over the prime indices of n, with multiplicity.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 3, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 3, 0, 2, 0, 2, 0, 1, 0, 2, 0, 3, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
Offset: 1
The prime indices of 49 are {4,4}, and the a(49) = 4 choices are: (2,2), (2,4), (4,2), (4,4).
The prime indices of 777 are {2,4,12}, and the a(777) = 6 choices are: (2,2,2), (2,2,3), (2,2,4), (2,4,2), (2,4,3), (2,4,4).
Allowing all divisors (not just primes) gives
A355731, firsts
A355732.
Choosing only prime factors (not prime-powers) gives
A355741.
Counting multisets of primes gives
A355744.
A000688 counts factorizations into prime powers.
A003963 multiplies together the prime indices of n.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Times@@PrimeOmega/@primeMS[n],{n,100}]
A331915
Numbers with exactly one prime prime index, counted with multiplicity.
Original entry on oeis.org
3, 5, 6, 10, 11, 12, 17, 20, 21, 22, 24, 31, 34, 35, 39, 40, 41, 42, 44, 48, 57, 59, 62, 65, 67, 68, 69, 70, 77, 78, 80, 82, 83, 84, 87, 88, 95, 96, 109, 111, 114, 115, 118, 119, 124, 127, 129, 130, 134, 136, 138, 140, 141, 143, 145, 147, 154, 156, 157, 159
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2} 57: {2,8} 114: {1,2,8}
5: {3} 59: {17} 115: {3,9}
6: {1,2} 62: {1,11} 118: {1,17}
10: {1,3} 65: {3,6} 119: {4,7}
11: {5} 67: {19} 124: {1,1,11}
12: {1,1,2} 68: {1,1,7} 127: {31}
17: {7} 69: {2,9} 129: {2,14}
20: {1,1,3} 70: {1,3,4} 130: {1,3,6}
21: {2,4} 77: {4,5} 134: {1,19}
22: {1,5} 78: {1,2,6} 136: {1,1,1,7}
24: {1,1,1,2} 80: {1,1,1,1,3} 138: {1,2,9}
31: {11} 82: {1,13} 140: {1,1,3,4}
34: {1,7} 83: {23} 141: {2,15}
35: {3,4} 84: {1,1,2,4} 143: {5,6}
39: {2,6} 87: {2,10} 145: {3,10}
40: {1,1,1,3} 88: {1,1,1,5} 147: {2,4,4}
41: {13} 95: {3,8} 154: {1,4,5}
42: {1,2,4} 96: {1,1,1,1,1,2} 156: {1,1,2,6}
44: {1,1,5} 109: {29} 157: {37}
48: {1,1,1,1,2} 111: {2,12} 159: {2,16}
These are numbers n such that
A257994(n) = 1.
The number of distinct prime prime indices is
A279952.
Numbers with at least one prime prime index are
A331386.
The set S of numbers with exactly one prime index in S are
A331785.
The set S of numbers with exactly one distinct prime index in S are
A331913.
Numbers with at most one prime prime index are
A331914.
Numbers with exactly one distinct prime prime index are
A331916.
Numbers with at most one distinct prime prime index are
A331995.
Cf.
A000040,
A000720,
A007097,
A007821,
A018252,
A112798,
A289509,
A320628,
A330944,
A330945,
A331784.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Count[primeMS[#],_?PrimeQ]==1&]
A302540
Numbers whose prime indices other than 1 are prime numbers.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 22, 24, 25, 27, 30, 31, 32, 33, 34, 36, 40, 41, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 64, 66, 67, 68, 72, 75, 80, 81, 82, 83, 85, 88, 90, 93, 96, 99, 100, 102, 108, 109, 110, 118, 120, 121, 123, 124
Offset: 1
Cf.
A000961,
A001222,
A003963,
A005117,
A006450,
A007716,
A056239,
A076610,
A275024,
A281113,
A291686,
A302242,
A302243,
A302534,
A302539.
-
Select[Range[400],#===1||And@@(#===1||PrimeQ[#]&)/@PrimePi/@FactorInteger[#][[All,1]]&]
-
ok(n)={!#select(p->p>2 && !isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018
A339113
Products of primes of squarefree semiprime index (A322551).
Original entry on oeis.org
1, 13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 169, 199, 233, 257, 269, 271, 293, 313, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 559, 577, 607, 611, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 841, 907, 929, 937
Offset: 1
The sequence of terms together with the corresponding multigraphs begins:
1: {} 233: {{2,7}} 487: {{2,11}}
13: {{1,2}} 257: {{3,5}} 491: {{1,15}}
29: {{1,3}} 269: {{2,8}} 499: {{3,8}}
43: {{1,4}} 271: {{1,10}} 559: {{1,2},{1,4}}
47: {{2,3}} 293: {{1,11}} 577: {{1,16}}
73: {{2,4}} 313: {{3,6}} 607: {{2,12}}
79: {{1,5}} 347: {{2,9}} 611: {{1,2},{2,3}}
101: {{1,6}} 373: {{1,12}} 631: {{3,9}}
137: {{2,5}} 377: {{1,2},{1,3}} 647: {{1,17}}
139: {{1,7}} 389: {{4,5}} 653: {{4,7}}
149: {{3,4}} 421: {{1,13}} 673: {{1,18}}
163: {{1,8}} 439: {{3,7}} 677: {{2,13}}
167: {{2,6}} 443: {{1,14}} 727: {{2,14}}
169: {{1,2},{1,2}} 449: {{2,10}} 751: {{4,8}}
199: {{1,9}} 467: {{4,6}} 757: {{1,19}}
These primes (of squarefree semiprime index) are listed by
A322551.
The strict (squarefree) case is
A309356.
The prime instead of squarefree semiprime version:
The nonprime instead of squarefree semiprime version:
The semiprime instead of squarefree semiprime version:
A002100 counts partitions into squarefree semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320911 lists products of squarefree semiprimes (Heinz numbers of
A338914).
A339561 lists products of distinct squarefree semiprimes (ranking:
A339560).
MM-numbers:
A255397 (normal),
A302478 (set multisystems),
A320630 (set multipartitions),
A302494 (sets of sets),
A305078 (connected),
A316476 (antichains),
A318991 (chains),
A320456 (covers),
A328514 (connected sets of sets),
A329559 (clutters),
A340019 (half-loop graphs).
-
sqfsemiQ[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
Select[Range[1000],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!sqfsemiQ[PrimePi[p]]]&]
A302492
Products of any power of 2 with prime numbers of prime-power index, i.e., prime numbers p of the form p = prime(q^k), for q prime, k >= 1.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 72, 75, 76, 77, 80, 81, 82, 83
Offset: 1
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
14: {{},{1,1}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
Cf.
A000961,
A001222,
A003963,
A005117,
A007716,
A050361,
A056239,
A076610,
A270995,
A275024,
A279784,
A281113,
A295935,
A301762,
A302242,
A302243,
A302493.
-
Select[Range[100],Or[#===1,And@@PrimePowerQ/@PrimePi/@DeleteCases[FactorInteger[#][[All,1]],2]]&]
-
ok(n)={!#select(p->p<>2&&!isprimepower(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018
Comments