cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 98 results. Next

A293439 Number of odious exponents in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 0, 2, 1, 3, 1, 0, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 1, 2, 2, 0, 2, 3, 1, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2017

Keywords

Examples

			For n = 2 = 2^1, the only exponent 1 is odious (that is, has an odd Hamming weight and thus is included in A000069), so a(2) = 1.
For n = 24 = 2^3 * 3^1, the exponent 3 (with binary representation "11") is evil (has an even Hamming weight and thus is included in A001969), while the other exponent 1 is odious, so a(24) = 1.
		

Crossrefs

Cf. A270428 (numbers such that a(n) = A001221(n)).
Differs from A144095 for the first time at n=24.

Programs

  • Mathematica
    a[n_] := Total@ ThueMorse[FactorInteger[n][[;; , 2]]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, May 18 2023 *)
  • PARI
    A293439(n) = vecsum(apply(e -> (hammingweight(e)%2), factorint(n)[, 2]));
    
  • Python
    from sympy import factorint
    def A293439(n): return sum(1 for e in factorint(n).values() if e.bit_count()&1) # Chai Wah Wu, Nov 23 2023

Formula

Additive with a(p^e) = A010060(e).
a(n) = A007814(A293443(n)).
From Amiram Eldar, Sep 28 2023: (Start)
a(n) >= 0, with equality if and only if n is an exponentially evil number (A262675).
a(n) <= A001221(n), with equality if and only if n is an exponentially odious number (A270428).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = -0.12689613844142998028..., where f(x) = 1/2 - x - ((1-x)/2) * Product_{k>=0} (1-x^(2^k)). (End)

A055212 Number of composite divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 3, 0, 3, 0, 3, 1, 1, 0, 5, 1, 1, 2, 3, 0, 4, 0, 4, 1, 1, 1, 6, 0, 1, 1, 5, 0, 4, 0, 3, 3, 1, 0, 7, 1, 3, 1, 3, 0, 5, 1, 5, 1, 1, 0, 8, 0, 1, 3, 5, 1, 4, 0, 3, 1, 4, 0, 9, 0, 1, 3, 3, 1, 4, 0, 7, 3, 1, 0, 8, 1, 1, 1, 5, 0, 8, 1, 3, 1, 1, 1, 9, 0, 3, 3, 6, 0, 4, 0, 5, 4
Offset: 1

Views

Author

Leroy Quet, Jun 23 2000

Keywords

Comments

Trivially, there is only one run of three consecutive 0's. However, there are infinitely many runs of three consecutive 1's and they are at positions A056809(n), A086005(n), and A115393(n) for n >= 1. - Timothy L. Tiffin, Jun 21 2021

Examples

			a[20] = 3 because the composite divisors of 20 are 4, 10, 20.
		

Crossrefs

Complement of A083399.

Programs

Formula

a(n) = A033273(n) - 1.
a(n) = tau(n)-omega(n)-1, where tau=A000005 and omega=A001221. - Reinhard Zumkeller, Jun 13 2003
G.f.: -x/(1 - x) + Sum_{k>=1} (x^k - x^prime(k))/((1 - x^k)*(1 - x^prime(k))). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) ~ n*log(n) - n*log(log(n)) + (2*gamma - 2 - B)*n, where gamma is Euler's constant (A001620) and B is Mertens's constant (A077761). - Amiram Eldar, Dec 07 2023

A143524 Decimal expansion of the (negated) constant in the expansion of the prime zeta function about s = 1.

Original entry on oeis.org

3, 1, 5, 7, 1, 8, 4, 5, 2, 0, 5, 3, 8, 9, 0, 0, 7, 6, 8, 5, 1, 0, 8, 5, 2, 5, 1, 4, 7, 3, 7, 0, 6, 5, 7, 1, 9, 9, 0, 5, 9, 2, 6, 8, 7, 6, 7, 8, 7, 2, 4, 3, 9, 2, 6, 1, 3, 7, 0, 3, 0, 2, 0, 9, 5, 9, 9, 4, 3, 2, 1, 5, 8, 8, 0, 2, 9, 6, 4, 6, 1, 2, 2, 2, 8, 0, 4, 4, 3, 1, 8, 5, 7, 5, 0, 0, 0, 9, 8, 4, 6, 3, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Aug 22 2008

Keywords

Comments

This constant appears in Franz Mertens's publication from 1874 on p. 58 (see link). - Artur Jasinski, Mar 17 2021

Examples

			-0.315718452053890076851... [corrected by _Georg Fischer_, Jul 29 2021]
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.2, p. 96.

Crossrefs

Programs

  • Mathematica
    digits = 104; S = NSum[PrimeZetaP[n]/n, {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits]; RealDigits[S, 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)

Formula

Equals A077761 minus A001620. - R. J. Mathar, Jan 22 2009
From Amiram Eldar, Aug 08 2020: (Start)
Equals -Sum{k>=2} mu(k) * log(zeta(k)) / k.
Equals -Sum_{p prime} (1/p + log(1 - 1/p))
Equals Sum_{k>=2} P(k)/k, where P is the prime zeta function. (End)
P(s) = log(zeta(s)) - A143524 + o(1) = log(1/(s-1)) - A143524 + o(1) as s -> 1. - Jianing Song, Jan 10 2024

Extensions

Digits changed to agree with A077761 and A001620 by R. J. Mathar, Oct 30 2009
Last digits corrected by Jean-François Alcover, Sep 11 2015

A125070 a(n) = number of nonzero exponents in the prime factorization of n which are not primes.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1, 3, 1, 0, 2, 2, 2, 0, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 0, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Leroy Quet, Nov 18 2006

Keywords

Examples

			720 has the prime-factorization of 2^4 *3^2 *5^1. Two of these exponents, 4 and 1, are not primes. So a(720) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Length @ Select[Last /@ FactorInteger[n], ! PrimeQ[ # ] &];Table[f[n], {n, 110}] (* Ray Chandler, Nov 19 2006 *)
  • PARI
    A125070(n) = vecsum(apply(e -> if(isprime(e),0,1), factorint(n)[, 2])); \\ Antti Karttunen, Jul 07 2017

Formula

From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = A005171(e).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B - C), where B is Mertens's constant (A077761) and C = Sum_{p prime} (P(p) - P(p+1)) = 0.39847584805803104040..., where P(s) is the prime zeta function. (End)

Extensions

Extended by Ray Chandler, Nov 19 2006

A346009 a(n) is the numerator of the average number of distinct prime factors of the divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 7, 1, 1, 1, 4, 1, 7, 1, 7, 1, 1, 1, 5, 2, 1, 3, 7, 1, 3, 1, 5, 1, 1, 1, 4, 1, 1, 1, 5, 1, 3, 1, 7, 7, 1, 1, 13, 2, 7, 1, 7, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 7, 6, 1, 3, 1, 7, 1, 3, 1, 17, 1, 1, 7, 7, 1, 3, 1, 13, 4, 1, 1, 5, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2021

Keywords

Examples

			The fractions begin with 0, 1/2, 1/2, 2/3, 1/2, 1, 1/2, 3/4, 2/3, 1, 1/2, 7/6, ...
f(2) = 1/2 since 2 has 2 divisors, 1 and 2, and (omega(1) + omega(2))/2 = (0 + 1)/2 = 1/2.
f(6) = 1 since 6 has 4 divisors, 1, 2, 3 and 6 and (omega(1) + omega(2) + omega(3) + omega(6))/4 = (0 + 1 + 1 + 2)/4 = 1.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.3.21 on page 100.

Crossrefs

Programs

  • Mathematica
    a[n_] := Numerator[DivisorSum[n, PrimeNu[#] &]/DivisorSigma[0, n]]; Array[a, 100]
    (* or *)
    f[p_, e_] := e/(e+1); a[1] = 0; a[n_] := Numerator[Plus @@ f @@@ FactorInteger[n]]; Array[a, 100]

Formula

Let f(n) = a(n)/A346010(n) be the sequence of fractions. Then:
f(n) = A062799(n)/A000005(n).
f(n) = (Sum_{p prime, p|n} d(n/p))/d(n), where d(n) is the number of divisors of n (A000005).
f(n) depends only on the prime signature of n: If n = Product_{i} p_i^e_i, then a(n) = Sum_{i} e_i/(e_i + 1).
f(p) = 1/2 for prime p.
f(n) = 1 for squarefree semiprimes n (A006881).
Sum_{k=1..n} f(k) ~ (1/2) * A013939(n) + C*n + O(n/log(n)) ~ n*log(log(n))/2 + (B/2 + C)*n + O(n/log(n)), where B is Mertens's constant (A077761) and C = A346011 (Duncan, 1961).

A361205 a(n) = 2*omega(n) - bigomega(n).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, -1, 0, 2, 1, 1, 1, 2, 2, -2, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, -1, 1, 1, 3, 1, -3, 2, 2, 2, 0, 1, 2, 2, 0, 1, 3, 1, 1, 1, 2, 1, -1, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 2, 1, 2, 1, -4, 2, 3, 1, 1, 2, 3, 1, -1, 1, 2, 1, 1, 2, 3, 1, -1, -2, 2, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2023

Keywords

Crossrefs

Without doubling omega we have -A046660.
Positions of 0's are A067801, counted by A239959.
Positions of negative terms are A360558, counted by A360254.
Positions of nonpositive terms are A361204, counted by A237363.
Positions of positive terms are A361393, counted by A237365.
Positions of nonnegative terms are A361395, counted by A361394.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    Table[2*PrimeNu[n]-PrimeOmega[n],{n,100}]

Formula

Additive with a(p^e) = 2 - e. - Amiram Eldar, Mar 26 2023
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = 2*A077761 - A083342 = A077761 - A136141 = -0.511659... . - Amiram Eldar, Oct 01 2023

A080256 Sum of numbers of distinct and of all prime factors of n.

Original entry on oeis.org

0, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 5, 2, 5, 2, 5, 4, 4, 2, 6, 3, 4, 4, 5, 2, 6, 2, 6, 4, 4, 4, 6, 2, 4, 4, 6, 2, 6, 2, 5, 5, 4, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 7, 2, 4, 5, 7, 4, 6, 2, 5, 4, 6, 2, 7, 2, 4, 5, 5, 4, 6, 2, 7, 5, 4, 2, 7, 4, 4, 4, 6, 2, 7, 4, 5, 4, 4, 4, 8, 2, 5, 5, 6, 2, 6, 2, 6, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2003

Keywords

Comments

a(n) = 2 iff n is prime, A000040; a(n) > 2 iff n is composite, A002808; a(n) <= 3 iff n is prime or square of prime, A000430; a(n) = 3 iff n is square of prime, A001248; a(A080257(n)) > 3;
a(n) <= 4 iff product of proper divisors <= n^2, A007964; a(n) = 4 iff n has four divisors, A030513; a(n) > 4 iff product of proper divisors > n^2, A058080; a(A064598(n)) <= 5; a(A080258(n)) = 5.

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ (Last /@ FactorInteger[n] + 1); Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 03 2005 *)
  • PARI
    a(n) = {my(f = factor(n)); omega(f) + bigomega(f);} \\ Amiram Eldar, Sep 28 2023

Formula

a(n) = Omega(n) + omega(n) = A001221(n) + A001222(n).
Additive with a(p^e) = e + 1.
Sum_{k=1..n} a(k) = 2 * n * log(log(n)) + c * n + O(n/log(n)), where c = A077761 + A083342 = 1.29615109474508069537... . - Amiram Eldar, Sep 28 2023

A284411 Least prime p such that more than half of all integers are divisible by n distinct primes not greater than p.

Original entry on oeis.org

3, 37, 42719, 5737850066077
Offset: 1

Views

Author

Peter Munn, Mar 26 2017

Keywords

Comments

The proportion of all integers that satisfy the divisibility criterion for p=prime(m) is determined using the proportion that satisfy it over any interval of primorial(m)=A002110(m) integers.
a(4) is from De Koninck, 2009; calculation credited to David Grégoire.
a(5) is about 7.887*10^34 assuming the Riemann Hypothesis, and about 7*10^34 unconditionally (De Koninck and Tenenbaum, 2002). - Amiram Eldar, Dec 05 2024

Examples

			Exactly half of the integers are divisible by 2, so a(1)>2. Two-thirds of all integers are divisible by 2 or 3, so a(1) = 3.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, pp. 13, 216 and 368.

Crossrefs

Formula

a(n) is least p=prime(m) such that 2*Sum_{k=0..n-1} A096294(m,k) < A002110(m).
log(log(a(n))) = n - b + O(1/sqrt(n)), where b = 1/3 + A077761 (De Koninck and Tenenbaum, 2002). - Amiram Eldar, Dec 05 2024

Extensions

Definition edited by N. J. A. Sloane, Apr 01 2017

A340839 Decimal expansion of Mertens constant C(5,1).

Original entry on oeis.org

1, 2, 2, 5, 2, 3, 8, 4, 3, 8, 5, 3, 9, 0, 8, 4, 5, 8, 0, 0, 5, 7, 6, 0, 9, 7, 7, 4, 7, 4, 9, 2, 2, 0, 5, 2, 7, 5, 4, 0, 5, 9, 5, 5, 0, 9, 3, 9, 1, 6, 4, 9, 9, 3, 8, 7, 6, 7, 3, 3, 3, 6, 4, 4, 3, 0, 2, 6, 7, 3, 1, 4, 2, 9, 6, 4, 4, 1, 7, 6, 1, 9, 2, 7, 3, 8, 4, 1, 6, 1, 9, 5, 6, 2, 7, 3, 6, 5, 2, 9, 5, 6, 6, 7, 5, 6, 7, 9, 6, 2, 7, 9, 0, 4, 2, 5, 9, 6, 3, 2, 4, 0, 2, 1, 1, 0, 0, 4, 8, 0, 7, 6, 8, 7, 9, 3, 3, 7, 6, 5, 5, 0, 4, 6, 7, 8, 7, 4, 2, 6, 0, 3, 2, 5, 0, 1, 1, 5, 3
Offset: 1

Views

Author

Artur Jasinski, Jan 23 2021

Keywords

Comments

Data taken from Alessandro Languasco and Alessandro Zaccagnini 2007.

Examples

			1.225238438539084580057609774749220527540595509391649938767...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95)

Crossrefs

Formula

A = C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
B = C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C = C(5,3)=0.805951040448267864057376860278430932081288114939010897934...
D = C(5,4)=1.299364547914977988160840014964265909502574970408329662016...
A*B*C*D = 0.70182435445860646228... = (5/4)*exp(-gamma), where gamma is the Euler-Mascheroni constant A001620.
Formula from the article by Languasco and Zaccagnini, 2010, p.9:
A = ((13*sqrt(5)*Pi^2*exp(-gamma))/(150*log((1+sqrt(5))/2))*A340628/A340808)^(1/4).

Extensions

Last 11 digits corrected by Vaclav Kotesovec, Jan 25 2021
More digits from Vaclav Kotesovec, Jan 26 2021

A349258 a(n) is the number of prime powers (not including 1) that are infinitary divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 3, 1, 3, 2, 2, 2, 2, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 4, 2, 4, 2, 2, 1, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 4, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2021

Keywords

Comments

The total number of prime powers (not including 1) that divide n is A001222(n).
For each n, all the prime powers that are infinitary divisors of n are "Fermi-Dirac primes" (A050376).

Examples

			12 has 4 infinitary divisors, 1, 3, 4 and 12. Two of these divisors, 3 and 4 = 2^2 are prime powers. Therefore a(12) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := 2^DigitCount[e, 2, 1] - 1; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    A349258(n) = if(1==n,0,vecsum(apply(x->(2^hammingweight(x))-1,factor(n)[,2]))); \\ Antti Karttunen, Nov 12 2021

Formula

Additive with a(p^e) = 2^A000120(e) - 1.
a(n) <= A001222(n), with equality if and only if n is in A036537.
a(n) <= A037445(n) - 1, with equality if and only if n is a prime power (including 1, A000961).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 0.28135949730844648114..., where f(x) = -(x+1) + (1-x) * Product_{k>=0} (1 + 2*x^(2^k)). - Amiram Eldar, Sep 29 2023

Extensions

Wrong comment removed by Amiram Eldar, Sep 22 2023
Previous Showing 21-30 of 98 results. Next