cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A224884 Expansion of x / Series_Reversion(x*sqrt(1 + 4*x)).

Original entry on oeis.org

1, 2, -6, 32, -210, 1536, -12012, 98304, -831402, 7208960, -63740820, 572522496, -5209363380, 47915728896, -444799488600, 4161823309824, -39209074920090, 371626340253696, -3541117629057540, 33902753847705600, -325969196485349340, 3146175557067079680, -30471769822097981160
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2013

Keywords

Comments

Signed version of A206300. - Peter Bala, Mar 05 2020

Examples

			G.f.: A(x) = 1 + 2*x - 6*x^2 + 32*x^3 - 210*x^4 + 1536*x^5 - 12012*x^6 + ..
The coefficients in the powers A(x)^n of the g.f. begin:
n= 1: [1,  2,  -6,   32,  -210,  1536,-12012,  98304, -831402, ...];
n= 2: [1,  4,  -8,   40,  -256,  1848,-14336, 116688, -983040, ...];
n= 3: [1,  6,  -6,   32,  -210,  1536,-12012,  98304, -831402, ...];
n= 4: [1,  8,   0,   16,  -128,  1008, -8192,  68640, -589824, ...];
n= 5: [1, 10,  10,    0,   -50,   512, -4620,  40960, -364650, ...];
n= 6: [1, 12,  24,   -8,     0,   168, -2048,  20592, -196608, ...];
n= 7: [1, 14,  42,    0,    14,     0,  -588,   8192,  -90090, ...];
n= 8: [1, 16,  64,   32,     0,   -32,     0,   2112,  -32768, ...];
n= 9: [1, 18,  90,   96,   -18,     0,    84,      0,   -7722, ...];
n=10: [1, 20, 120,  200,     0,    24,     0,   -240,       0, ...];
n=11: [1, 22, 154,  352,   110,     0,   -44,      0,     726, ...];
n=12: [1, 24, 192,  560,   384,   -48,     0,     96,       0, ...];
n=13: [1, 26, 234,  832,   910,     0,    52,      0,    -234, ...];
n=14: [1, 28, 280, 1176,  1792,   392,     0,    -80,       0, ...];
n=15: [1, 30, 330, 1600,  3150,  1536,  -140,      0,     150, ...];
n=16: [1, 32, 384, 2112,  5120,  4032,     0,    128,       0, ...];
n=17: [1, 34, 442, 2720,  7854,  8704,  1428,      0,    -170, ...];
n=18: [1, 36, 504, 3432, 11520, 16632,  6144,   -432,       0, ...];
n=19: [1, 38, 570, 4256, 16302, 29184, 17556,      0,     342, ...];
n=20: [1, 40, 640, 5200, 22400, 48048, 40960,   5280,       0, ...]; ...
which illustrates the property [x^n] A(x)^(n+2*k) = 0 for k=1..n-1:
[x^2] A(x)^4 = 0;
[x^3] A(x)^5 = 0, [x^3] A(x)^7 = 0;
[x^4] A(x)^6 = 0, [x^4] A(x)^8 = 0, [x^4] A(x)^10 = 0; ...
[x^5] A(x)^7 = 0, [x^5] A(x)^9 = 0, [x^5] A(x)^11 = 0, [x^5] A(x)^13 = 0; ...
Related series:
sqrt(1+4*x) = 1 + 2*x - 2*x^2 + 4*x^3 - 10*x^4 + 28*x^5 - 84*x^6 + 264*x^7 - 858*x^8 + ... + (-1)^(n-1)*2*A000108(n-1)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x/InverseSeries[Series[x*Sqrt[1+4*x],{x,0,20}],x],{x,0,20}],x] (* Vaclav Kotesovec, Aug 22 2013 *)
  • PARI
    {a(n)=polcoeff(x/serreverse(x*sqrt(1+4*x +x^2*O(x^n))),n)}
    for(n=0,25,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = A(x)^3 - 4*x.
(2) A(x) = sqrt(1 + 4*x/A(x)).
(3) A(x*sqrt(1+4*x)) = sqrt(1+4*x).
(4) [x^n] A(x)^(n+2*k) = 0 for k=1..n-1, for n >= 2.
From Vaclav Kotesovec, Aug 22 2013: (Start)
a(n) = (-1)^(n+1) * 3^(3*n/2-1) * 4^(n-1) * GAMMA(n/2 - 1/6) * GAMMA(n/2 + 1/6)/(Pi*n!).
|a(n)| ~ 6^(n-1)*3^(n/2)/(sqrt(Pi/2)*n^(3/2)).
D-finite with recurrence: (n-1)*n*a(n) = 12*(3*n-7)*(3*n-5)*a(n-2). (End)
G.f.: (2/sqrt(3))*cosh(1/3*arccosh(sqrt(108)*x)). - Vladimir Kruchinin, Oct 11 2022
G.f. A(x) satisfies A(x) = 1/A(-x/A(x)^4). - Seiichi Manyama, Jun 20 2025

A245113 G.f. A(x) satisfies A(x)^2 = 1 + 4*x*A(x)^6.

Original entry on oeis.org

1, 2, 22, 340, 6118, 120060, 2492028, 53798888, 1195684230, 27175425004, 628705751828, 14756641134872, 350529497005532, 8410852483002200, 203561027031883320, 4963404936414528720, 121810229481173225670, 3006555636255509030220, 74585744314812449403300, 1858695101618327423328312
Offset: 0

Views

Author

Paul D. Hanna, Jul 31 2014

Keywords

Comments

Radius of convergence of g.f. A(x) is r = 1/27 where A(r) = sqrt(3/2).

Examples

			G.f.: A(x) = 1 + 2*x + 22*x^2 + 340*x^3 + 6118*x^4 + 120060*x^5 + ...
where A(x)^2 = 1 + 4*x*A(x)^6:
A(x)^2 = 1 + 4*x + 48*x^2 + 768*x^3 + 14080*x^4 + 279552*x^5 + ...
A(x)^6 = 1 + 12*x + 192*x^2 + 3520*x^3 + 69888*x^4 + 1462272*x^5 + ...
Related series:
A(x)^5 = 1 + 10*x + 150*x^2 + 2660*x^3 + 51750*x^4 + 1068012*x^5 + ...
A(x)^10 = 1 + 20*x + 400*x^2 + 8320*x^3 + 179200*x^4 + 3969024*x^5 + ...
where A(x) = sqrt(1 + 4*x^2*A(x)^10) + 2*x*A(x)^5.
		

Crossrefs

Programs

  • Maple
    A245113:=n->4^n*binomial((6*n-1)/2,n)/(4*n+1): seq(A245113(n), n=0..30); # Wesley Ivan Hurt, Aug 11 2015
  • Mathematica
    Table[4^n*Binomial[(6 n - 1)/2, n]/(4 n + 1), {n, 0, 20}] (* Wesley Ivan Hurt, Aug 11 2015 *)
  • PARI
    /* From A(x)^2 = 1 + 4*x*A(x)^6 : */
    {a(n) = local(A=1+x);for(i=1,n,A=sqrt(1 + 4*x*A^6 +x*O(x^n)));polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = 4^n * binomial((6*n - 1)/2, n) / (4*n + 1)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* From A(x) = sqrt(1 + 4*x^2*A(x)^10) + 2*x*A(x)^5 : */
    {a(n) = local(A=1+x);for(i=1,n,A = sqrt(1 + 4*x^2*A^10 +x*O(x^n)) + 2*x*A^5);polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = 4^n * binomial((6*n - 1)/2, n) / (4*n + 1).
G.f. A(x) satisfies A(x) = sqrt(1 + 4*x^2*A(x)^10) + 2*x*A(x)^5.
G.f.: A(x) = sqrt(D(4*x)), where D(x) is the g.f. of A001764. - Werner Schulte, Aug 10 2015
From Karol A. Penson, Mar 19 2024: (Start)
a(n) = 4^n*binomial(3*n+1/2,n)/(6*n+1).
G.f.: 3F2([1/6, 1/2, 5/6], [3/4, 5/4], 27*x).
G.f.: sqrt(2)*sqrt((-(sqrt(1 - 27*x) + 3*i*sqrt(3)*sqrt(x))^(1/3) + (sqrt(1 - 27*x) - 3*i*sqrt(3)*sqrt(x))^(1/3))*i)*3^(3/4)/(6*x^(1/4)), where i is the imaginary unit.
a(n) = Integral_{x=0...27} x^n*W(x), where W(x) = h1(x) + h2(x) + h3(x) and
h1(x) = 2^(2/3)*3F2([-1/12, 1/6, 5/12], [1/3, 2/3], x/27)/(4*Pi*x^(5/6));
h2(x) = -3F2([1/4, 1/2, 3/4], [2/3, 4/3], x/27)/(12*Pi*sqrt(x));
h3(x) = -2^(1/3)*3F2([7/12, 5/6, 13/12], [4/3, 5/3], x/27)/(576*Pi*x^(1/6)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem on x = (0, 27). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 27. For x -> 27, W'(x) tends to -infinity. (End)
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^10). - Seiichi Manyama, Jun 20 2025
a(n) ~ 27^n / (4 * n^(3/2) * sqrt(2*Pi)). - Amiram Eldar, Sep 04 2025

A281733 Positive integers T_i such that Sum_{k >= 0} (S_k * x^(2*k+1)) + 1/24 - Sum_{k >= 1} (T_k * x^(2*k)) = (cos((2/3) * arccos(6 * sqrt(3) * x)))/12 for all real x with |x| <= 1/(6 * sqrt(3)), where S_k = A176898(k).

Original entry on oeis.org

1, 32, 1792, 122880, 9371648, 763363328, 65028489216, 5722507051008, 516147694796800, 47463855386787840, 4433247375867248640, 419423751734223175680, 40109816011998942461952, 3870915577031009050296320, 376519953782381735485374464, 36874663860751966094632157184
Offset: 1

Views

Author

Felix Fröhlich, Jan 31 2017

Keywords

Comments

The terms are given on page 3 in Sun (2013).
Conjecture: T_p == -2 (mod p) for any prime p (cf. Sun (2013), Conjecture 4).
This is the odd bisection of A078531 divided by 2. The even bisection divided by 2 is A176898. - Akiva Weinberger, Dec 09 2024

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1/24)(1 - Cos[(2/3) ArcSin[6 Sqrt[3x]]]), {x, 0, 20}], x] // Rest (* Davin Park, Feb 06 2017, updated by Jean-François Alcover, Mar 21 2020 *)
    CoefficientList[Series[(1-HypergeometricPFQ[{-1/3,1/3},{1/2,1},108x])/24,{x,0,16}],x]*Table[n!,{n,0,16}] (* Stefano Spezia, Mar 21 2020 *)

Formula

a(n) = 16^(n-1) * binomial(3*n-2, 2*n-1)/n. - Sarah Selkirk, Feb 11 2020
From Stefano Spezia, Feb 11 2020: (Start)
O.g.f.: (1/24)*(1 - cos((2/3) * arcsin(6 * sqrt(3*x)))).
E.g.f.: (1/24)*(1 - F([-1/3, 1/3], [1/2, 1], 108*x)), where F is the generalized hypergeometric function. (End)
a(n) = binomial(6n-3, 3n-3/2)*binomial(3n-3/2, n-1/2)/(4*n*binomial(2*n-1, n-1/2)). - Akiva Weinberger, Dec 09 2024
a(n) = A078531(2*n-1)/2. - Akiva Weinberger, Dec 09 2024

Extensions

Extended by Davin Park, Feb 06 2017

A176898 a(n) = binomial(6*n, 3*n)*binomial(3*n, n)/(2*(2*n+1)*binomial(2*n, n)).

Original entry on oeis.org

5, 231, 14586, 1062347, 84021990, 7012604550, 607892634420, 54200780036595, 4938927219474990, 457909109348466930, 43057935618181929900, 4096531994713828810686, 393617202432246696493436, 38142088615983865845923052, 3723160004902167033863327592
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 28 2010

Keywords

Comments

During April 26-28, 2010, Zhi-Wei Sun introduced this new sequence and proved that a(n) = binomial(6n,3n)*binomial(3n,n)/(2*(2n+1)*binomial(2n,n)) is a positive integer for every n=1,2,3,... He also observed that a(n) is odd if and only if n is a power of two, and that 3a(n)=0 (mod 2n+3). By Stirling's formula, we have lim_n (8n*sqrt(n*Pi)a(n)/108^n) = 1. It is interesting to find a combinatorial interpretation or recursion for the sequence.
From Tatiana Hessami Pilehrood, Dec 01 2015: (Start)
Zhi-Wei Sun formulated two conjectures concerning a(n) (see Conjectures 1.1 and 1.2 in Z.-W. Sun, "Products and sums divisible by central binomial coefficients" and Conjecture A89 in "Open conjectures on congruences"). The first conjecture states that Sum_{n=1..p-1} a(n)/(108^n) is congruent to 0 or -1 modulo a prime p > 3 depending on whether p is congruent to +-1 or +-5 modulo 12, respectively.
The second conjecture asks about an exact formula for a companion sequence of a(n). Both conjectures as well as many numerical congruences involving a(n) and (2n+1)a(n) were solved by Kh. Hessami Pilehrood and T. Hessami Pilehrood, see the link below. (End)
This is the even bisection of A078531 divided by 2. The odd bisection divided by 2 is A281733. - Akiva Weinberger, Dec 09 2024

Examples

			For n=2 we have a(2) = binomial(12,6)*binomial(6,2)/(2*(2*2+1)*binomial(4,2)) = 231.
		

Crossrefs

Programs

  • Magma
    [Binomial(6*n, 3*n)*Binomial(3*n, n)/(2*(2*n+1)*Binomial(2*n, n)): n in [1..15]]; // Vincenzo Librandi, Dec 02 2015
    
  • Maple
    ogf := eval((1-6*s)/((12*s-1)*(8*s-2)) - 1/2, s=RootOf(x+(3*s-1)*(12*s-1)^2*s*(4*s-1)^2,s));
    series(ogf,x=0,30); # Mark van Hoeij, May 06 2013
  • Mathematica
    S[n_]:=Binomial[6n,3n]Binomial[3n,n]/(2(2n+1)Binomial[2n,n]) Table[S[n],{n,1,50}]
  • PARI
    a(n) = binomial(6*n, 3*n) * binomial(3*n, n) / (2*(2*n+1) * binomial(2*n, n)); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r): return f(n)/f(r)/f(n-r)
    def A176898(n): return C(6*n, 3*n) * C(3*n, n) / (2*(2*n+1) * C(2*n, n)) # Indranil Ghosh, Mar 05 2017

Formula

G.f.: (1-6*s)/((12*s-1)*(8*s-2)) - 1/2, where x+(3*s-1)*(12*s-1)^2*s*(4*s-1)^2 = 0. - Mark van Hoeij, May 06 2013
a(n) ~ 2^(2*n-3) * 3^(3*n) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 09 2023
From Peter Bala, Feb 21 2023: (Start)
a(n+1) = 6*(6*n + 1)*(6*n + 5)/((n + 1)*(2*n + 3))*a(n).
a(n) = (2^(2*n-1)) * Product_{1 <= i <= j <= 2*n-1} (2*i + j + 2)/(2*i + j - 1). Cf. A006013. (End)
D-finite with recurrence n*(2*n+1)*a(n) -6*(6*n-1)*(6*n-5)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
a(n) = 2^(4n-1) * binomial(3n-1/2, 2n)/(2n+1). - Akiva Weinberger, Dec 09 2024
a(n) = A078531(2*n)/2. - Akiva Weinberger, Dec 09 2024

A385208 G.f. A(x) satisfies A(x) = ( 1 + 49*x*A(x)^8 )^(1/7).

Original entry on oeis.org

1, 7, 245, 11319, 593047, 33429123, 1977326743, 121034349975, 7601257418678, 487008549508481, 31705597390195820, 2091361378163375955, 139468121325692304390, 9387480337647754305649, 636914947847207765431080, 43512658997082838985965655, 2990750175103769856729417627
Offset: 0

Views

Author

Seiichi Manyama, Jun 21 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 49^n*binomial(8*n/7+1/7, n)/(8*n+1);

Formula

a(n) = 49^n * binomial(8*n/7+1/7,n)/(8*n+1).
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^9).
G.f.: ( (1/x) * Series_Reversion(x/(1+49*x)^(8/7)) )^(1/8).

A307489 G.f. A(x) satisfies: A(x) = 1/(1 - 2*x*A(x) - x*A(x)/(1 - x*A(x)/(1 - x*A(x)/(1 - ...)))), a continued fraction.

Original entry on oeis.org

1, 3, 19, 152, 1367, 13195, 133556, 1398696, 15029311, 164764985, 1835614027, 20722066612, 236524088612, 2725081792932, 31649837891768, 370161223462480, 4355751419996559, 51532214460643957, 612604251998847641, 7313900470316335280, 87659840436181657215
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 19*x^2 + 152*x^3 + 1367*x^4 + 13195*x^5 + 133556*x^6 + 1398696*x^7 + 15029311*x^8 + 164764985*x^9 + 1835614027*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 21; CoefficientList[1/x InverseSeries[Series[x (1 - 4 x + Sqrt[1 - 4 x])/2, {x, 0, terms}], x], x]
    terms = 21; A[] = 0; Do[A[x] = 1/(1 - 2 x A[x] + ContinuedFractionK[-x A[x], 1, {k, 1, j}]) + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
    terms = 20; A[] = 1; Do[A[x] = 2/(1 - 4 x A[x] + Sqrt[1 - 4 x A[x]]) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
    terms = 21; A[] = 1; Do[A[x] = Sum[Binomial[2 k + 1, k + 1] x^k A[x]^k, {k, 0, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 2/(1 - 4*x*A(x) + sqrt(1 - 4*x*A(x))).
G.f. A(x) satisfies: A(x) = Sum_{k>=0} binomial(2*k+1,k+1)*x^k*A(x)^k.
G.f.: A(x) = (1/x)*Series_Reversion(x*(1 - 4*x + sqrt(1 - 4*x))/2).
a(n) ~ 2^(12*n + 5) / (sqrt(Pi) * 17^(1/4) * n^(3/2) * (107 + 51*sqrt(17))^(n + 1/2)). - Vaclav Kotesovec, Sep 16 2021

A307490 G.f. A(x) satisfies: A(x) = 1/(1 - x*A(x) - x^2*A(x)^2/(1 - x^2*A(x)^2/(1 - x^2*A(x)^2/(1 - ...)))), a continued fraction.

Original entry on oeis.org

1, 1, 3, 10, 39, 161, 700, 3144, 14495, 68167, 325787, 1577654, 7724612, 38176620, 190196440, 954182528, 4816268367, 24441691827, 124633707865, 638272397350, 3281390284623, 16929034639153, 87617665434328, 454796186669800, 2367025393846724, 12349738834935876
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 39*x^4 + 161*x^5 + 700*x^6 + 3144*x^7 + 14495*x^8 + 68167*x^9 + 325787*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 26; CoefficientList[1/x InverseSeries[Series[x (1 - 2 x + Sqrt[1 - 4 x^2])/2, {x, 0, terms}], x], x]
    terms = 26; A[] = 0; Do[A[x] = 1/(1 - x A[x] + ContinuedFractionK[-x^2 A[x]^2, 1, {k, 1, j}]) + O[x]^j, {j, 1,terms}]; CoefficientList[A[x], x]
    terms = 25; A[] = 1; Do[A[x] = 2/(1 - 2 x A[x] + Sqrt[1 - 4 x^2 A[x]^2]) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
    terms = 26; A[] = 1; Do[A[x] = Sum[Binomial[k, Floor[k/2]] x^k A[x]^k, {k, 0, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 2/(1 - 2*x*A(x) + sqrt(1 - 4*x^2*A(x)^2)).
G.f. A(x) satisfies: A(x) = Sum_{k>=0} binomial(k,floor(k/2))*x^k*A(x)^k.
G.f.: A(x) = (1/x)*Series_Reversion(x*(1 - 2*x + sqrt(1 - 4*x^2))/2).
a(n) ~ 1/(n^(3/2)*sqrt(Pi*(103/6 + (1/6)*sqrt(36037)*cos((1/3)*(4*Pi + arccos(6832781/(36037*sqrt(36037))))))) * (-7/48 + (1/24)*sqrt(203/2) * cos((1/3)*arccos(-(1849/(203*sqrt(406))))))^n). - Vaclav Kotesovec, Sep 16 2021

A379383 G.f. A(x) satisfies A(x) = sqrt( (1 + 2*x*A(x))/(1 - 2*x*A(x)^3) ).

Original entry on oeis.org

1, 2, 10, 80, 750, 7680, 83252, 939008, 10905942, 129548288, 1566565452, 19220267008, 238662840780, 2993651974144, 37876206019560, 482802294325248, 6194365014836582, 79930063134392320, 1036640587694252380, 13505632613590630400, 176673045664669396132, 2319654465118014537728
Offset: 0

Views

Author

Seiichi Manyama, Dec 22 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2^n*sum(k=0, n, binomial(n/2+2*k-1/2, k)*binomial(n/2+k+1/2, n-k)/(n+2*k+1));

Formula

a(n) = 2^n * Sum_{k=0..n} binomial(n/2+2*k-1/2,k) * binomial(n/2+k+1/2,n-k)/(n+2*k+1).
a(n) = 2^n * Sum_{k=0..n} binomial(n,k) * binomial(n/2+2*k+1/2,n)/(n+4*k+1).

A089073 Number of symmetric non-crossing connected graphs on n equidistant nodes on a circle.

Original entry on oeis.org

1, 1, 2, 5, 10, 32, 64, 231, 462, 1792, 3584, 14586, 29172, 122880, 245760, 1062347, 2124694, 9371648, 18743296, 84021990, 168043980, 763363328, 1526726656, 7012604550, 14025209100, 65028489216, 130056978432, 607892634420
Offset: 1

Views

Author

Emeric Deutsch, Dec 04 2003

Keywords

Comments

Number of symmetric non-crossing connected graphs on n equidistant nodes on a circle (it is assumed that the axis of symmetry is a diameter of the circle passing through a given node).

Examples

			a(4)=5 because on the nodes A,B,C,D (axis of symmetry through A) the only symmetric non-crossing connected graphs are (AB,AC,AD), (AC,BC,DC), (AB,BC,CD,DA), (AB,BC,CD,DA,BD), (AB,BC,CD,DA,AC).
		

Crossrefs

Cf. A078531.

Programs

  • Maple
    a := proc(n) if n mod 2 = 0 then 4^(n/2)*binomial((3*(n/2)-1)/2,n/2)/2/(n/2+1) else 2*4^((n-1)/2)*binomial((3*((n-1)/2)-1)/2,(n-1)/2)/2/((n-1)/2+1) fi end; seq(a(n), n=1..30);
  • Mathematica
    a[n_] := If[EvenQ[n], 2^n Binomial[(3n-2)/4, n/2]/(n+2), 2^n Binomial[ (3n-5)/4, (n-1)/2]/(n+1)];
    Array[a, 28] (* Jean-François Alcover, Jul 29 2018 *)

Formula

a(2k) = 4^k*binomial((3k-1)/2, k)/[2(k+1)], a(2k+1) = 2a(2k).
a(2k) = (1/2)A078531(k), a(2k+1) = A078531(k).
Conjecture D-finite with recurrence n*(n+2)*(23*n^2-162*n+199) *a(n) +12*(27*n^2-47*n-10) *a(n-1) +24*(-27*n^2+47*n+10) *a(n-2) +48 *(27*n^2-47*n-10) *a(n-3) -12*(3*n-13)*(3*n-5)*(23*n^2-116*n+60) *a(n-4)=0. - R. J. Mathar, Jul 22 2022

Extensions

Name edited by Michel Marcus, Jul 30 2018

A360636 Triangle read by rows. T(n, m) = (1/(n + 1)) * C(n + 1, m) * 4^n * C((3*n - m + 1)/2 - 1, n) if n is odd, otherwise (1/(n + 1)) * C(n + 1, m) * C((3*n - m)/2, n) * C(3*n - m, (3*n - m)/2) / C(n - m, (n - m)/2).

Original entry on oeis.org

1, 2, 2, 10, 16, 6, 64, 140, 96, 20, 462, 1280, 1260, 512, 70, 3584, 12012, 15360, 9240, 2560, 252, 29172, 114688, 180180, 143360, 60060, 12288, 924, 245760, 1108536, 2064384, 2042040, 1146880, 360360, 57344, 3432
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 14 2023

Keywords

Examples

			Triangle T(n, m) begins:
[0]     1;
[1]     2,      2;
[2]    10,     16,      6;
[3]    64,    140,     96,     20;
[4]   462,   1280,   1260,    512,    70;
[5]  3584,  12012,  15360,   9240,  2560,   252;
[6] 29172, 114688, 180180, 143360, 60060, 12288, 924;
		

Crossrefs

Cf. A078531, A000984, A151403 (row sums).

Programs

  • Maple
    T := (n, k) -> ifelse(n mod 2 = 1, 4^n*((3*n - k - 1)/2)! / (k!*(n + 1 - k)! * ((n - k - 1)/2)!), binomial(n + 1, k) * ((n - k)/2)! * (3*n - k)! / (((3*n - k)/2)! * (n + 1)! * (n - k)!)): for n from 0 to 6 do seq(simplify(T(n, k)), k=0..n) od;
    # Alternative:
    gf := ((1 - 4*x*y)*sin(arcsin((216*x^2) / (1 - 4*x*y)^3 - 1)/3))/(6*x) + (1 - 4*x*y) / (12*x): assume(x > 0); serx := series(gf, x, 9): poly := n -> simplify(coeff(serx, x, n)): seq(print(seq(coeff(poly(n), y, k), k = 0..n)), n = 0..6); # Peter Luschny, Feb 15 2023
  • Maxima
    T(n,m):=if n
    				

Formula

G.f.: ((1 - 4*x*y)*sin(arcsin((216*x^2) / (1 - 4*x*y)^3 - 1)/3))/(6*x) + (1 - 4*x*y) / (12*x).
Previous Showing 11-20 of 22 results. Next