cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 88 results. Next

A324694 Lexicographically earliest sequence of positive integers divisible by prime(m) for some m not already in the sequence.

Original entry on oeis.org

2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 35, 36, 38, 40, 41, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   4: {1,1}
   5: {3}
   6: {1,2}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
  20: {1,1,3}
  22: {1,5}
  23: {9}
  24: {1,1,1,2}
  25: {3,3}
  26: {1,6}
  28: {1,1,4}
  30: {1,2,3}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=!And@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>aQ[PrimePi[p]]];
    Select[Range[100],aQ]

A079254 a(n) is taken to be the smallest positive integer greater than a(n-1) which is consistent with the condition "n is a member of the sequence if and only if a(n) is prime".

Original entry on oeis.org

4, 6, 8, 11, 12, 13, 14, 17, 18, 20, 23, 29, 31, 37, 38, 39, 41, 43, 44, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 71, 73, 74, 79, 80, 83, 89, 90, 91, 97, 101, 103, 104, 105, 106, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167
Offset: 1

Views

Author

Keywords

Examples

			a(1) cannot be 1 because 1 is not prime; it cannot be 2, for then 1 is not in the sequence while a(1) is prime; nor can it be 3; but 4 is possible.
		

Crossrefs

Cf. A079000.

Programs

  • PARI
    s=0; n=1; for (v=2, 167, if (bitxor(bittest(s,n), !isprime(v)), print1 (v", "); n++; s+=2^v)) \\ Rémy Sigrist, Apr 13 2020

A005224 T is the first, fourth, eleventh, ... letter in this sentence, not counting spaces or commas (Aronson's sequence).

Original entry on oeis.org

1, 4, 11, 16, 24, 29, 33, 35, 39, 45, 47, 51, 56, 58, 62, 64, 69, 73, 78, 80, 84, 89, 94, 99, 104, 111, 116, 122, 126, 131, 136, 142, 147, 158, 164, 169, 174, 181, 183, 193, 199, 205, 208, 214, 220, 226, 231, 237, 243, 249, 254, 270, 288, 303, 307, 319, 323, 341
Offset: 1

Views

Author

Keywords

Comments

a(10^9) = 11281384554. - Hans Havermann, Apr 21 2017
First differences start: 3, 7, 5, 8, 5, 4, 2, 4, 6, 2, 4, 5, 2, 4, 2, 5, 4, 5, 2, 4, 5, 5, 5, 5, 7, 5, 6, 4, 5, 5, 6, 5, 11, 6, 5, 5, 7, 2, 10, 6, ... - Daniel Forgues, Sep 11 2019
Named after the British clinical pharmacologist Jeffrey Kenneth Aronson (b. 1947). - Amiram Eldar, Jun 23 2021

Examples

			The sentence begins
1234567890 1234567890 1234567890 1234567890 1234567890
Tisthefirs tfourthele venthsixte enthtwenty fourthtwen
tyninththi rtythirdth irtyfiftht hirtyninth fortyfifth
fortyseven thfiftyfir stfiftysix thfiftyeig hthsixtyse
condsixtyf ourthsixty ninthseven tythirdsev entyeighth
eightiethe ightyfourt heightynin thninetyfo urthninety
ninthonehu ndredfourt honehundre deleventho nehundreds
ixteenthon ehundredtw entysecond onehundred twentysixt
honehundre dthirtyfir stonehundr edthirtysi xthonehund
redfortyse cond...
		

References

  • J. K. Aronson, quoted by D. R. Hofstadter in Metamagical Themas, Basic Books, NY, 1985, p. 44.
  • James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    seed="tisthe"; s[1]=1;s[2]=4;
    name[n_]:=StringReplace[IntegerName[n,{"English","Ordinal"}],{"-"->""," "->""}];
    s[n_]:=seed=StringJoin[seed<>name[StringPosition[seed,"t"][[n-2,1]]]];
    l=s/@Range[58]; Table[StringPosition[Last[l],"t"][[i,1]],{i,1,Length[l]}] (* Ivan N. Ianakiev, Mar 25 2020 *)
  • Python
    from num2words import num2words
    from itertools import islice
    def n2w(n):
        os = num2words(n, ordinal=True).replace(" and", "")
        return os.replace(" ", "").replace("-", "").replace(chr(44), "")
    def agen(): # generator of terms
        s, idx = "tisthe", 0
        while True:
            idx_rel = 1 + s.index("t")
            idx += idx_rel
            yield idx
            s = s[idx_rel:] + n2w(idx)
    print(list(islice(agen(), 58))) # Michael S. Branicky, Mar 18 2022

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Oct 31 2000

A324696 Lexicographically earliest sequence containing 1 and all numbers divisible by prime(m) for some m not already in the sequence.

Original entry on oeis.org

1, 3, 6, 7, 9, 11, 12, 14, 15, 18, 19, 21, 22, 24, 27, 28, 29, 30, 33, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 63, 66, 69, 70, 71, 72, 75, 76, 77, 78, 81, 82, 83, 84, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 105
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   6: {1,2}
   7: {4}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  18: {1,2,2}
  19: {8}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  27: {2,2,2}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  33: {2,5}
  35: {3,4}
  36: {1,1,2,2}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=n==1||Or@@Cases[FactorInteger[n],{p_,k_}:>!aQ[PrimePi[p]]];
    Select[Range[100],aQ]

A324572 Number of integer partitions of n whose multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are equal to the distinct parts in decreasing order.

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 3, 0, 2, 0, 4, 1, 2, 1, 4, 1, 3, 1, 5, 3, 5, 1, 6, 2, 6, 1, 7, 2, 7, 2, 11, 4, 8, 3, 11, 5, 10, 4, 13, 5, 11, 5, 16, 8, 14, 5, 19, 8, 18, 6, 22, 8, 22, 7, 26, 10, 25, 8, 33, 12, 29, 11, 36, 13, 34, 12, 40, 16, 41, 14, 47, 17, 45, 16, 55
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

These are a kind of self-describing partitions (cf. A001462, A304679).
The Heinz numbers of these partitions are given by A324571.
The case where the distinct parts are taken in increasing order is counted by A033461, with Heinz numbers given by A109298.

Examples

			The first 19 terms count the following integer partitions:
   1: (1)
   4: (22)
   4: (211)
   6: (3111)
   8: (41111)
   9: (333)
  10: (511111)
  10: (322111)
  12: (6111111)
  12: (4221111)
  12: (33222)
  14: (71111111)
  14: (52211111)
  16: (811111111)
  16: (622111111)
  16: (4444)
  16: (442222)
  17: (43331111)
  18: (9111111111)
  18: (7221111111)
  19: (533311111)
		

Crossrefs

Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Union[#]==Length/@Split[#]&]],{n,0,30}]

Extensions

More terms from Alois P. Heinz, Mar 08 2019

A324704 Lexicographically earliest sequence containing 1 and all numbers > 2 divisible by prime(m) for some m already in the sequence.

Original entry on oeis.org

1, 4, 6, 7, 8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 84
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   4: {1,1}
   6: {1,2}
   7: {4}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
		

Crossrefs

Programs

A324698 Lexicographically earliest sequence containing 2 and all numbers > 1 whose prime indices already belong to the sequence.

Original entry on oeis.org

2, 3, 5, 9, 11, 15, 23, 25, 27, 31, 33, 45, 47, 55, 69, 75, 81, 83, 93, 97, 99, 103, 115, 121, 125, 127, 135, 137, 141, 155, 165, 197, 207, 211, 225, 235, 243, 249, 253, 257, 275, 279, 291, 297, 309, 341, 345, 347, 363, 375, 379, 381, 405, 411, 415, 419, 423
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   3: {2}
   5: {3}
   9: {2,2}
  11: {5}
  15: {2,3}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  31: {11}
  33: {2,5}
  45: {2,2,3}
  47: {15}
  55: {3,5}
  69: {2,9}
  75: {2,3,3}
  81: {2,2,2,2}
  83: {23}
  93: {2,11}
  97: {25}
  99: {2,2,5}
		

Crossrefs

Programs

A324525 Numbers divisible by prime(k)^k for each prime index k.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 27, 32, 36, 54, 64, 72, 81, 108, 125, 128, 144, 162, 216, 243, 250, 256, 288, 324, 432, 486, 500, 512, 576, 625, 648, 729, 864, 972, 1000, 1024, 1125, 1152, 1250, 1296, 1458, 1728, 1944, 2000, 2048, 2187, 2250, 2304, 2401, 2500, 2592
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The prime signature of a number is the multiset of multiplicities (or exponents) in its prime factorization.
Also Heinz numbers of integer partitions where the multiplicity of k is at least k (A117144). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins as follows. For example, 36 = prime(1) * prime(1) * prime(2) * prime(2) is a term because the prime multiplicities are {2,2}, which are greater than or equal to the prime indices {1,2}.
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   18: {1,2,2}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   54: {1,2,2,2}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  125: {3,3,3}
  128: {1,1,1,1,1,1,1}
		

Crossrefs

Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.

Programs

  • Maple
    q:= n-> andmap(i-> i[2]>=numtheory[pi](i[1]), ifactors(n)[2]):
    select(q, [$1..3000])[];  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>=PrimePi[p]]&]
    seq[max_] := Module[{ps = {2}, p, s = {1}, s1, s2, emax}, While[ps[[-1]]^Length[ps] < max, AppendTo[ps, NextPrime[ps[[-1]]]]]; Do[p = ps[[k]]; emax = Floor[Log[p, max]]; s1 = Join[{1}, p^Range[k, emax]]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &]; s = Union[s, s2], {k, 1, Length[ps]}]; s]; seq[3000] (* Amiram Eldar, Nov 23 2020 *)

Formula

Closed under multiplication.
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^(k-1) * (prime(k)-1)) = 2.35782843100111139159... - Amiram Eldar, Nov 23 2020

A324697 Lexicographically earliest sequence of positive integers > 1 that are prime or whose prime indices already belong to the sequence.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 37, 41, 43, 45, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 79, 81, 83, 85, 89, 93, 97, 99, 101, 103, 107, 109, 113, 115, 121, 123, 125, 127, 131, 135, 137, 139, 141, 149, 151, 153, 155, 157, 163, 165
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  15: {2,3}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  37: {12}
  41: {13}
  43: {14}
  45: {2,2,3}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=Switch[n,1,False,?PrimeQ,True,,And@@Cases[FactorInteger[n],{p_,k_}:>aQ[PrimePi[p]]]];
    Select[Range[100],aQ]

A003605 Unique monotonic sequence of nonnegative integers satisfying a(a(n)) = 3n.

Original entry on oeis.org

0, 2, 3, 6, 7, 8, 9, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120
Offset: 0

Views

Author

Keywords

Comments

Another definition: a(0) = 0, a(1) = 2; for n > 1, a(n) is taken to be the smallest positive integer greater than a(n-1) which is consistent with the condition "n is a member of the sequence if and only if a(n) is a multiple of 3". - Benoit Cloitre, Feb 14 2003
Yet another definition: a(0) = 0, a(1)=2; for n > 1, a(n) is the smallest integer > a(n-1) satisfying "if n is in the sequence, a(n)==0 (mod 3)" ("only if" omitted).
This sequence is the case m = 2 of the following family: a(1, m) = m, a(n, m) is the smallest integer > a(n-1, m) satisfying "if n is in the sequence, a(n, m) == 0 (mod (2m-1))". The general formula is: for any k >= 0, for j = -m*(2m-1)^k, ..., -1, 0, 1, ..., m*(2m-1)^k, a((m-1)*(2*m-1)^k+j) = (2*m-1)^(k+1)+m*j+(m-1)*abs(j).
Numbers whose base-3 representation starts with 2 or ends with 0. - Franklin T. Adams-Watters, Jan 17 2006
This sequence was the subject of the 5th problem of the 27th British Mathematical Olympiad in 1992 (see link British Mathematical Olympiad, reference Gardiner's book and second example for the answer to the BMO question). - Bernard Schott, Dec 25 2020

Examples

			9 is in the sequence and the smallest multiple of 3 greater than a(9-1)=a(8)=15 is 18. Hence a(9)=18.
a(1992) = a(2*3^6+534) = 3^7+3*534 = 3789 (answer to B.M.O. problem).
		

References

  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, pages 5 and 113-114 (1992).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Unique monotonic sequence of positive integers satisfying a(a(n)) = k*(n-1) + 3: A080637 (k=2), this sequence (k=3), A353651 (k=4), A353652 (k=5), A353653 (k=6).

Programs

  • Maple
    filter:= n ->  (n mod 3 = 0) or (n >= 2*3^floor(log[3](n))):
    select(filter, [$0..1000]); # Robert Israel, Oct 15 2014
  • Mathematica
    a[n_] := a[n] = Which[ Mod[n, 3] == 0, 3 a[n/3], Mod[n, 3] == 1, 2*a[(n-1)/3] + a[(n-1)/3 + 1], True, a[(n-2)/3] + 2*a[(n-2)/3 + 1]]; a[0]=0; a[1]=2; a[2]=3; Table[a[n], {n, 0, 67}] (* Jean-François Alcover, Jul 18 2012, after Michael Somos *)
  • PARI
    a(n)=if(n<3,n+(n>0),(3-(n%3))*a(n\3)+(n%3)*a(n\3+1))
    
  • PARI
    {A(n)=local(d,w,l3=log(3),l2=log(2),l3n);
               l3n = log(n)/l3;
               w   = floor(l3n);         \\ highest exponent w such that 3^w <= n
               d   = frac(l3n)*l3/l2+1;  \\ first digit in base-3 repr. of n
                  if ( d<2 , d=1 , d=2 );\\   make d an integer either 1 or 2
               if(d==1, n = n + 3^w , n = (n - 3^w)*3);
               return(n);}
    \\ Gottfried Helms, Jan 11 2012
    
  • Python
    from sympy import integer_log
    def A003605(n): return max(n+(m:=3**integer_log(n,3)[0]),3*(n-m)) if n else 0  # Chai Wah Wu, Feb 03 2025

Formula

For any k>=0, a(3^k - j) = 2*3^k - 3j, 0 <= j <= 3^(k-1); a(3^k + j) = 2*3^k + j, 0 <= j <= 3^k.
From Michael Somos, May 03 2000: (Start)
a(3*n) = 3*a(n), a(3*n+1) = 2*a(n) + a(n+1), a(3*n+2) = a(n) + 2a(n+1), n > 0.
a(n+1) - 2*a(n) + a(n-1) = {2 if n=3^k, -2 if n=2*3^k, otherwise 0}, n > 1. (End)
a(n) = n + A006166(n). - Vladeta Jovovic, Mar 01 2003
a(n) = abs(2*3^floor(log_3(n)) - n) + 2n - 3^floor(log_3(n)) for n>=1. - Theodore Lamort de Gail, Sep 12 2017
For any k >= 0, a(2*3^k + j) = 3^(k+1) + 3*j, 0 <= j <= 3^k. - Bernard Schott, Dec 25 2020
Previous Showing 11-20 of 88 results. Next