A157872
a(n) = 9*n^2 - 3.
Original entry on oeis.org
6, 33, 78, 141, 222, 321, 438, 573, 726, 897, 1086, 1293, 1518, 1761, 2022, 2301, 2598, 2913, 3246, 3597, 3966, 4353, 4758, 5181, 5622, 6081, 6558, 7053, 7566, 8097, 8646, 9213, 9798, 10401, 11022, 11661, 12318, 12993, 13686, 14397, 15126, 15873, 16638, 17421, 18222
Offset: 1
-
I:=[6, 33, 78]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 05 2012
-
LinearRecurrence[{3, -3, 1}, {6, 33, 78}, 50] (* Vincenzo Librandi, Feb 05 2012 *)
9*Range[50]^2-3 (* Harvey P. Dale, Aug 04 2024 *)
-
for(n=1, 40, print1(9*n^2 - 3", ")); \\ Vincenzo Librandi, Feb 05 2012
A271675
Numbers m such that 3*m + 4 is a square.
Original entry on oeis.org
0, 4, 7, 15, 20, 32, 39, 55, 64, 84, 95, 119, 132, 160, 175, 207, 224, 260, 279, 319, 340, 384, 407, 455, 480, 532, 559, 615, 644, 704, 735, 799, 832, 900, 935, 1007, 1044, 1120, 1159, 1239, 1280, 1364, 1407, 1495, 1540, 1632, 1679, 1775, 1824, 1924, 1975, 2079, 2132, 2240, 2295, 2407
Offset: 1
a(4) = 32 because 3*32 + 4 = 100 = 10*10.
-
[n: n in [0..4000] | IsSquare(3*n+4)];
-
Select[Range[0,2500], IntegerQ@ Sqrt[3 # + 4] &] (* Michael De Vlieger, Apr 12 2016 *)
LinearRecurrence[{1,2,-2,-1,1},{0,4,7,15,20},60] (* Harvey P. Dale, Dec 09 2016 *)
-
from gmpy2 import is_square
for n in range(0,10**5):
if(is_square(3*n+4)):print(n)
# Soumil Mandal, Apr 12 2016
A378066
Array read by ascending antidiagonals: A(n, k) = (-2*n)^k * Euler(k, (n - 1)/(2*n)) for n >= 1 and A(0, k) = 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -3, -2, 1, 1, 1, -8, -11, 0, 1, 1, 1, -15, -26, 57, 16, 1, 1, 1, -24, -47, 352, 361, 0, 1, 1, 1, -35, -74, 1185, 1936, -2763, -272, 1, 1, 1, -48, -107, 2976, 6241, -38528, -24611, 0, 1
Offset: 0
Array starts:
[0] 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 1, 0, -2, 0, 16, 0, ... A155585
[2] 1, 1, -3, -11, 57, 361, -2763, ... A188458
[3] 1, 1, -8, -26, 352, 1936, -38528, ... A000810
[4] 1, 1, -15, -47, 1185, 6241, -230895, ... A000813
[5] 1, 1, -24, -74, 2976, 15376, -906624, ... A378065
[6] 1, 1, -35, -107, 6265, 32041, -2749355, ...
[7] 1, 1, -48, -146, 11712, 59536, -6997248, ...
-
A := (n, k) -> ifelse(n = 0, 1, (-2*n)^k * euler(k, (n - 1) / (2*n))):
for n from 0 to 7 do seq(A(n, k), k = 0..9) od; # row by row
# Alternative:
A := proc(n, k) local j; add(binomial(k, j)*euler(j, 1/2)*(-2*n)^j, j = 0..k) end: seq(seq(A(n - k, k), k = 0..n), n = 0..10);
# Using generating functions:
egf := n -> exp(x)/cosh(n*x): ser := n -> series(egf(n), x, 14):
row := n -> local k; seq(k!*coeff(ser(n), x, k), k = 0..7):
seq(lprint(row(n)), n = 0..7);
A271723
Numbers k such that 3*k - 8 is a square.
Original entry on oeis.org
3, 4, 8, 11, 19, 24, 36, 43, 59, 68, 88, 99, 123, 136, 164, 179, 211, 228, 264, 283, 323, 344, 388, 411, 459, 484, 536, 563, 619, 648, 708, 739, 803, 836, 904, 939, 1011, 1048, 1124, 1163, 1243, 1284, 1368, 1411, 1499, 1544, 1636, 1683, 1779, 1828, 1928, 1979, 2083, 2136, 2244, 2299
Offset: 1
a(1) = 3 because 3*3 - 8 = 1^2.
Cf. numbers n such that 3*n + k is a square: this sequence (k=-8),
A120328 (k=-6),
A271713 (k=-5),
A056107 (k=-3),
A257083 (k=-2),
A033428 (k=0),
A001082 (k=1),
A080663 (k=3),
A271675 (k=4),
A100536 (k=6),
A271741 (k=7),
A067725 (k=9).
-
[n: n in [1..2400] | IsSquare(3*n-8)];
-
seq(seq(((3*m+k)^2+8)/3, k=1..2),m=0..50); # Robert Israel, Dec 05 2016
-
Select[Range@ 2400, IntegerQ@ Sqrt[3 # - 8] &] (* Bruno Berselli, Apr 14 2016 *)
LinearRecurrence[{1,2,-2,-1,1},{3,4,8,11,19},60] (* Harvey P. Dale, Oct 02 2020 *)
-
from gmpy2 import is_square
[n for n in range(3000) if is_square(3*n-8)] # Bruno Berselli, Dec 05 2016
-
[(6*(n-1)*n-(2*n-1)*(-1)**n+23)/8 for n in range(1, 60)] # Bruno Berselli, Dec 05 2016
A173202
Solutions y of the Mordell equation y^2 = x^3 - 3a^2 + 1 for a = 0,1,2, ... (solutions x are given by the sequence A000466).
Original entry on oeis.org
0, 5, 58, 207, 500, 985, 1710, 2723, 4072, 5805, 7970, 10615, 13788, 17537, 21910, 26955, 32720, 39253, 46602, 54815, 63940, 74025, 85118, 97267, 110520, 124925, 140530, 157383, 175532, 195025, 215910, 238235, 262048, 287397, 314330, 342895
Offset: 1
With a=3, x = 35 and y = 207, and then 207^2 = 35^2 - 26.
- T. Apostol, Introduction to Analytic Number Theory, Springer, 1976
- D. Duverney, Theorie des nombres (2e edition), Dunod, 2007, p.151
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- W. J. Ellison, F. Ellison, J. Pesek, C. E. Stall & D. S. Stall, The diophantine equation y^2 + k = x^3, J. Number Theory 4 (1972), 107-117.
- Helmut Richter, Solutions of Mordell's equation y^2 = x^3 + k (solutions for 0
- School of Mathematics and Statistics, University of St Andrews, Louis Joel Mordell.
- Eric Weisstein's World of Mathematics, Mordell Curve.
- D. J. Wright, Mordell's Equation.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
I:=[0, 5, 58, 207]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
-
for a from 0 to 100 do : z := evalf(a*(8*a^2 - 3)) : print (z) :od :
-
CoefficientList[Series[x*(5+38*x+5*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 02 2012 *)
CoefficientList[Series[E^x (5 x + 24 x^2 + 8 x^3), {x, 0, 40}], x]*Table[n!, {n, 0, 40}] (* Stefano Spezia, Dec 04 2018 *)
A239064
Positive integers whose square can be expressed as k*x^2+(k+1)*x+(k+2) with k and x positive integers.
Original entry on oeis.org
3, 5, 6, 9, 10, 12, 15, 16, 18, 19, 21, 23, 24, 26, 27, 30, 33, 36, 37, 39, 40, 41, 42, 44, 45, 47, 48, 51, 52, 54, 57, 58, 60, 61, 63, 64, 65, 66, 67, 68, 69, 72, 75, 78, 79, 81, 82, 83, 84, 86, 87, 89, 90, 92, 93, 96, 99, 100, 102, 103, 105, 107, 108, 110, 111, 114, 117, 120, 121, 123, 124, 126, 128, 129, 130, 131, 132, 134, 135, 138, 141, 142, 144, 145, 147, 149, 150, 152, 153, 156, 159, 162, 163, 165, 166, 168, 170, 171, 173, 174, 176, 177, 180, 183, 184, 186, 187, 189, 191, 192, 194, 195, 196, 198, 201, 204
Offset: 1
a(10)=19 from 19^2=361=51*2^2+(51+1)*2+(51+2).
From _Wolfdieter Lang_, Apr 21 2014: (Start)
k = 2: There are two proper solutions of 2*X^2 - Y^2 = 23, namely [4, 3], [6, 7]. Both generate infinitely many new solutions, all with even X, namely [4, 3], [18, 25], [104, 147], [606, 857],[3532, 4995], [20586, 29113], ... and [6, 7], [32, 45], [186, 263], [1084, 1533],[6318, 8935], [36824, 52077], ... . Only every other solution has 2*k = 4 dividing Y - (2+1) = Y-3, giving the positive solutions for (a=X/2, b=Y; x), starting with the second proper solution and then alternating between the two sets of solutions (3, 7; 1), (52, 147; 36), (93, 263; 65), (1766, 4995; 1248), (3159, 8935; 2233), ... . Thus the positive x solutions for k = 2 are 1, 36, 65, 1248, 2233, ..., with a = 3, 52, 93, 1766, 3159, ... .
k = 3: the positive solutions for x are 2, 5, 38, 79, 538, 1109, ..., with a = 5, 10, 67, 138, 933, 1922, ..., coming from the even X solutions of 3*X^2 - Y^2 = 44, [4, 2], [10, 16], [36, 62], [134, 232], [500, 866], [1866, 3232], ... and [6, 8], [20, 34], [74, 128], [276, 478], [1030, 1784], [3844, 6658], ... . Then 2*k = 6 has to divide Y - 4, leaving every other of these solutions with (a = X/2, b=Y; x) given by (5, 16; 2), (10, 34; 5), (67, 232; 38), (138, 478; 79), (933, 3232; 538), (1922, 6658; 1109), ... .
k = 5: there are no solutions of 5*X^2 - Y2 = 104.
k = 6: there are no solutions of 6*X^2 - Y2 = 143.
(End)
- D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989.
Edited, name specified, comment changed, reference and link added by
Wolfdieter Lang, Apr 21 2014
A292717
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. -log(1 - x)/(1 - x)^k.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 11, 6, 0, 1, 7, 26, 50, 24, 0, 1, 9, 47, 154, 274, 120, 0, 1, 11, 74, 342, 1044, 1764, 720, 0, 1, 13, 107, 638, 2754, 8028, 13068, 5040, 0, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 40320, 0, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 362880
Offset: 0
E.g.f. of column k: A_k(x) = x/1! + (2*k + 1)*x^2/2! + (3*k^2 + 6*k + 2)*x^3/3! + 2*(2*k^3 + 9*k^2 + 11*k + 3)*x^4/4! + ...
Square array begins:
0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
2, 11, 26, 47, 74, 107, ...
6, 50, 154, 342, 638, 1066, ...
24, 274, 1044, 2754, 5944, 11274, ...
Columns k=0..11 give
A104150,
A000254,
A001705,
A001711 (with offset 1),
A001716 (with offset 1),
A001721 (with offset 1),
A051524,
A051545,
A051560,
A051562,
A051564,
A203147.
-
Table[Function[k, n! SeriesCoefficient[-Log[1 - x]/(1 - x)^k, {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Comments