cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A172968 a(n) = 7*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 13, 89, 610, 4181, 28657, 196418, 1346269, 9227465, 63245986, 433494437, 2971215073, 20365011074, 139583862445, 956722026041, 6557470319842, 44945570212853, 308061521170129, 2111485077978050, 14472334024676221
Offset: 0

Views

Author

Artur Jasinski, Feb 06 2010

Keywords

Crossrefs

Essentially the same as A033891.

Programs

  • GAP
    List([0..30], n-> Fibonacci(4*n-1)); # G. C. Greubel, Jul 15 2019
  • Magma
    [n le 2 select n else 7*Self(n-1)-Self(n-2): n in [1..30]]; // Bruno Berselli, Mar 29 2016
    
  • Maple
    with(combinat):F:= n-> fibonacci(n):L:=n-> 2*F(n+1)-F(n):
    seq(1/2*(L(4*n)-F(4*n)), n=0..20); # Gary Detlefs, Nov 28 2010
  • Mathematica
    Table[Sqrt[1-2m+5m^2]/.m ->Fibonacci[2n+1]Fibonacci[2n+2], {n, -1, 30}]
    CoefficientList[Series[(1-5x)/(1-7x+x^2), {x, 0, 30}], x] (* Michael De Vlieger, Mar 29 2016 *)
    Fibonacci[4*Range[0, 30] -1] (* G. C. Greubel, Jul 15 2019 *)
  • PARI
    x='x+O('x^30); Vec((1-5*x)/(1-7*x+x^2)) \\ Altug Alkan, Mar 29 2016
    
  • Sage
    [fibonacci(4*n-1) for n in (0..30)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = (1/10)*((5+sqrt(5))*((7-3*sqrt(5))/2)^n + ((5-sqrt(5))*((7+3*sqrt(5))/2)^n)).
a(n) = sqrt(1 - 2*F(2n+1)*F(2n+2) + 5*(F(2n+1)*F(2n+2))^2), where F = A000045.
a(n) = sqrt(1 - 2*A081016(n) + 5*A081016(n)^2).
a(n) = A033891(n-1), n>0. - R. J. Mathar, Feb 08 2010
a(n) = (Lucas(4*n) - Fibonacci(4*n))/2, where Lucas = A000032. - Gary Detlefs, Nov 28 2010
G.f.: (1 - 5*x)/(1 - 7*x + x^2). - Bruno Berselli, Mar 29 2016
a(n) = Fibonacci(4*n-1). - G. C. Greubel, Jul 15 2019
a(n) = (a(n-1)^2 + 9)/a(n-2). - Klaus Purath, Aug 30 2020

A276472 Modified Pascal's triangle read by rows: T(n,k) = T(n-1,k) + T(n-1,k-1), 12. T(n,n) = T(n,n-1) + T(n-1,n-1), n>1. T(1,1) = 1, T(2,1) = 1. n>=1.

Original entry on oeis.org

1, 1, 2, 4, 3, 5, 11, 7, 8, 13, 29, 18, 15, 21, 34, 76, 47, 33, 36, 55, 89, 199, 123, 80, 69, 91, 144, 233, 521, 322, 203, 149, 160, 235, 377, 610, 1364, 843, 525, 352, 309, 395, 612, 987, 1597, 3571, 2207, 1368, 877, 661, 704, 1007, 1599, 2584, 4181
Offset: 1

Views

Author

Yuriy Sibirmovsky, Sep 12 2016

Keywords

Comments

The recurrence relations for the border terms are the only way in which this differs from Pascal's triangle.
Column T(2n,n+1) appears to be divisible by 4 for n>=2; T(2n-1,n) divisible by 3 for n>=2; T(2n,n-2) divisible by 2 for n>=3.
The symmetry of T(n,k) can be observed in a hexagonal arrangement (see the links).
Consider T(n,k) mod 3 = q. Terms with q = 0 show reflection symmetry with respect to the central column T(2n-1,n), while q = 1 and q = 2 are mirror images of each other (see the link).

Examples

			Triangle T(n,k) begins:
n\k 1    2    3    4   5    6    7    8    9
1   1
2   1    2
3   4    3    5
4   11   7    8    13
5   29   18   15   21   34
6   76   47   33   36   55   89
7   199  123  80   69   91   144 233
8   521  322  203  149  160  235 377  610
9   1364 843  525  352  309  395 612  987  1597
...
In another format:
__________________1__________________
_______________1_____2_______________
____________4_____3_____5____________
________11_____7_____8_____13________
____29_____18_____15____21_____34____
_76_____47____33_____36____55_____89_
		

Crossrefs

Programs

  • Mathematica
    Nm=12;
    T=Table[0,{n,1,Nm},{k,1,n}];
    T[[1,1]]=1;
    T[[2,1]]=1;
    T[[2,2]]=2;
    Do[T[[n,1]]=T[[n-1,1]]+T[[n,2]];
    T[[n,n]]=T[[n-1,n-1]]+T[[n,n-1]];
    If[k!=1&&k!=n,T[[n,k]]=T[[n-1,k]]+T[[n-1,k-1]]],{n,3,Nm},{k,1,n}];
    {Row[#,"\t"]}&/@T//Grid
  • PARI
    T(n,k) = if (k==1, if (n==1, 1, if (n==2, 1, T(n-1,1) + T(n,2))), if (kMichel Marcus, Sep 14 2016

Formula

Conjectures:
Relations with other sequences:
T(n+1,1) = A002878(n-1), n>=1.
T(n,n) = A001519(n) = A122367(n-1), n>=1.
T(n+1,2) = A005248(n-1), n>=1.
T(n+1,n) = A001906(n) = A088305(n), n>=1.
T(2n-1,n) = 3*A054441(n-1), n>=2. [the central column].
Sum_{k=1..n} T(n,k) = 3*A105693(n-1), n>=2. [row sums].
Sum_{k=1..n} T(n,k)-T(n,1)-T(n,n) = 3*A258109(n), n>=2.
T(2n,n+1) - T(2n,n) = A026671(n), n>=1.
T(2n,n-1) - T(2n,n) = 2*A026726(n-1), n>=2.
T(n,ceiling(n/2)) - T(n-1,floor(n/2)) = 2*A026732(n-3), n>=3.
T(2n+1,2n) = 3*A004187(n), n>=1.
T(2n+1,2) = 3*A049685(n-1), n>=1.
T(2n+1,2n) + T(2n+1,2) = 3*A033891(n-1), n>=1.
T(2n+1,3) = 5*A206351(n), n>=1.
T(2n+1,2n)/3 - T(2n+1,3)/5 = 4*A092521(n-1), n>=2.
T(2n,1) = 1 + 5*A081018(n-1), n>=1.
T(2n,2) = 2 + 5*A049684(n-1), n>=1.
T(2n+1,2) = 3 + 5*A058038(n-1), n>=1.
T(2n,3) = 3 + 5*A081016(n-2), n>=2.
T(2n+1,1) = 4 + 5*A003482(n-1), n>=1.
T(3n,1) = 4*A049629(n-1), n>=1.
T(3n,1) = 4 + 8*A119032(n), n>=1.
T(3n+1,3) = 8*A133273(n), n>=1.
T(3n+2,3n+2) = 2 + 32*A049664(n), n>=1.
T(3n,3n-2) = 4 + 32*A049664(n-1), n>=1.
T(3n+2,2) = 2 + 16*A049683(n), n>=1.
T(3n+2,2) = 2*A023039(n), n>=1.
T(2n-1,2n-1) = A033889(n-1), n>=1.
T(3n-1,3n-1) = 2*A007805(n-1), n>=1.
T(5n-1,1) = 11*A097842(n-1), n>=1.
T(4n+5,3) - T(4n+1,3) = 15*A000045(8n+1), n>=1.
T(5n+4,3) - T(5n-1,3) = 11*A000204(10n-2), n>=1.
Relations between left and right sides:
T(n,1) = T(n,n) - T(n-2,n-2), n>=3.
T(n,2) = T(n,n-1) - T(n-2,n-3), n>=4.
T(n,1) + T(n,n) = 3*T(n,n-1), n>=2.

A240836 Numbers n such that n^3 = x*y*z where 2 <= x <= y <= z , n^3+1 = (x-1)*(y+1)*(z+1).

Original entry on oeis.org

2, 12, 80, 546, 3740, 25632, 175682, 1204140, 8253296, 56568930, 387729212, 2657535552, 18215019650, 124847601996, 855718194320, 5865179758242, 40200540113372, 275538601035360, 1888569667134146, 12944449068903660, 88722573815191472, 608113567637436642
Offset: 1

Views

Author

Naohiro Nomoto, Apr 12 2014

Keywords

Comments

Also, z/y approx = y/x approx = golden ratio.

Examples

			546^3 = 338 * 546 * 882, 546^3 + 1 = 337 * 547 * 883.
25632^3 = 15842 * 25632 * 41472, 25632^3 + 1 = 15841 * 25633 * 41473.
		

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..30], n-> 2*F(2*n)*F(2*n-1) ); # G. C. Greubel, Jul 15 2019
  • Magma
    F:=Fibonacci; [2*F(2*n)*F(2*n-1): n in [1..30]]; // G. C. Greubel, Jul 15 2019
    
  • Maple
    with(combinat); A240836:=n->2*fibonacci(2*n)*fibonacci(2*n-1); seq(A240836(n), n=1..30); # Wesley Ivan Hurt, Apr 13 2014
  • Mathematica
    Table[2Fibonacci[2n]Fibonacci[2n-1], {n, 30}] (* Wesley Ivan Hurt, Apr 13 2014 *)
  • PARI
    vector(30, n, f=fibonacci; 2*f(2*n)*f(2*n-1)) \\ G. C. Greubel, Jul 15 2019
    
  • Sage
    f=fibonacci; [2*f(2*n)*f(2*n-1) for n in (1..30)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = 2*F(2n)*F(2n-1) where F(n) are the Fibonacci numbers (A000045).
G.f.: 2*x*(1-2*x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Apr 13 2014
a(n) = 2 * A081016(n-1). - Wesley Ivan Hurt, Apr 13 2014

Extensions

More terms from Colin Barker, Apr 13 2014

A356716 a(n) is the integer w such that (c(n)^2, -d(n)^2, -w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 11^3, where c(n) = F(n+2) + (-1)^n * F(n-3), d(n) = F(n+1) + (-1)^n * F(n-4) and F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

5, 19, 31, 101, 179, 655, 1189, 4451, 8111, 30469, 55555, 208799, 380741, 1431091, 2609599, 9808805, 17886419, 67230511, 122595301, 460804739, 840280655, 3158402629, 5759369251, 21648013631, 39475304069, 148377692755, 270567759199, 1016995835621, 1854499010291
Offset: 1

Views

Author

XU Pingya, Aug 24 2022

Keywords

Comments

Conjecture:
(i) For all k > 2, 2*x^3 + 2*y^3 + z^3 = A089270(k)^3 have primitive solutions form (c(n)^2, -d(n)^2, -w(n)) with d(n) = 3*d(n-2) - d(n-4), c(n) = d(n+2) - d(n) and w(n) = 8*w(n-2) - 8*w(n-4) + w(n-6).
(ii) This sequence is a subsequence of A089270.
From XU Pingya, Jun 07 2024: (Start)
Several positive examples of conjecture:
When A089270(4,5,6,7) = {19,29,31,41}, d(n) can be taken as:
(1/2) * (F(n+3) + (-1)^n * F(n-6));
((1-(-1)^n)/2) * (F(n+3) + F(n-4)) + ((1+(-1)^n)/2) * (F(n+3) - F(n-4));
((1-(-1)^n)/2) * (2*F(n-1) + 3*F(n-3)) + ((1+(-1)^n)/2) * (3*F(n-2) + 2*F(n-4));
and
((1-(-1)^n)/2) * (2*F(n+1) + F(n-5)) + ((1+(-1)^n)/2) * (F(n+2) + 2*F(n-4)).
When A089270(17) = 121, d(n) can be taken as d(1,2,3,4) = {-3,0,7,11}. (End)
From XU Pingya, Jul 17 2024: (Start)
Furthermore, we observe that if (x, y) (y < x/2) is the solution of the Diophantine equation x^2 + x * y - y^2 = A089270(k). Let
d(2*n-1) = x * F(2*n-2) - y * F(2*n-3), c(2*n-1) = d(2*n+1) - d(2*n-1);
d(2*n) = x * F(2*n-2) + y * F(2*n-1), c(2*n) = d(2*n+2) - d(2*n).
Then such c(n) and d(n) satisfy the conjecture. (End)

Examples

			For n=3, 2 * ((F(5) - F(0))^2)^3 + 2 * (-(F(4) - F(-1))^2)^3 + (-31)^3 = 2 * 25^3 - 2 * 4^3 - 31^3 = 1331, a(3) = 31.
		

Crossrefs

Programs

  • Mathematica
    Table[(-1331+2*((Fibonacci[n+2]+(-1)^n*Fibonacci[n-3]))^6-2*(Fibonacci[n+1]+(-1)^n*Fibonacci[n-4])^6)^(1/3), {n,28}]

Formula

a(n) = (-1331 + 2 * A237132(n)^6 - 2 * A228208(n-1)^6)^(1/3).
a(n) = ((1-(-1)^n)/2) * (-1 + 6 * Sum_{k=0..n-1} Fibonacci(4*k-1) + 14 * Sum_{k=0..n-2} Fibonacci(4*k+1)) + ((1+(-1)^n)/2) * (-1 + 6 * Sum_{k=0..n-1} Fibonacci(4*k-1) + 14 * Sum_{k=0..n-1} Fibonacci(4*k+1)).
a(n) = ((1-(-1)^n)/2) * (-1 + 6*A206351(n) + 14*A081016(n-2)) + ((1+(-1)^n)/2) * (-1 + 6*A206351(n) + 14*A081016(n-1)).
From Stefano Spezia, Aug 25 2022: (Start)
G.f.: x*(5 + 14*x - 23*x^2 - 28*x^3 - x^4)/((1 - x)*(1 - 3*x + x^2)*(1 + 3*x + x^2)).
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) - a(n-4) + a(n-5) for n > 5. (End)
From XU Pingya, Jul 17 2024: (Start)
a(2*n-1) = (F(2*n) + F(2*n-2) + F(2*n-5))^2 + (F(2*n) + F(2*n-2) + F(2*n-5)) * (F(2*n-2) + F(2*n-4) + F(2*n-7)) - (F(2*n-2) + F(2*n-4) + F(2*n-7))^2;
a(2*n) = (F(2*n+2) + F(2*n-3))^2 + (F(2*n+2) + F(2*n-3)) * (F(2*n) + F(2*n-5)) - (F(2*n) + F(2*n-5))^2. (End)

A356717 a(n) is the integer w such that (c(n)^2, -d(n)^2, w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 11^3, where c(n) = F(n+2) + (-1)^n * F(n-3), d(n) = F(n+3) + (-1)^n * F(n-2) and F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 29, 59, 241, 445, 1691, 3089, 11629, 21211, 79745, 145421, 546619, 996769, 3746621, 6831995, 25679761, 46827229, 176011739, 320958641, 1206402445, 2199883291, 8268805409, 15078224429, 56675235451, 103347687745, 388457842781, 708355589819, 2662529664049
Offset: 1

Views

Author

XU Pingya, Aug 24 2022

Keywords

Examples

			For n=3, 2 * ((F(5) - F(0))^2)^3 + 2 * (-(F(6) - F(1))^2)^3 + 59^3 = 2 * 25^3 - 2 * 49^3 + 59^3 = 1331, a(3) = 59.
		

Crossrefs

Programs

  • Mathematica
    Table[(1331-2*((Fibonacci[n+2]+(-1)^n*Fibonacci[n-3]))^6+2*(Fibonacci[n+3]+(-1)^n*Fibonacci[n-2])^6)^(1/3), {n,28}]

Formula

a(n) = (1331 - 2 * A237132(n)^6 + 2 * A228208(n+1)^6)^(1/3).
a(n) = ((1-(-1)^n)/2) * (-5 + 14 * Sum_{k=1..n-1} Fibonacci(4*k-1) + 6 * Sum_{k=0..n-1} Fibonacci(4*k+1)) + ((1+(-1)^n)/2) * (-5 + 14 * Sum_{k=1..n} Fibonacci(4*k-1) + 6 * Sum_{k=0..n-1} Fibonacci(4*k+1)).
a(n) = ((1-(-1)^n)/2) * (-5 + 14 * A081018(n-1) + 6 * A081016(n-1)) + ((1+(-1)^n)/2) * (-5 + 14 * A081018(n) + 6 * A081016(n-1)).
From Stefano Spezia, Aug 25 2022: (Start)
G.f.: x*(1 + 28*x + 23*x^2 - 14*x^3 - 5*x^4)/((1 - x)*(1 - 3*x + x^2)*(1 + 3*x + x^2)).
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) - a(n-4) + a(n-5) for n > 5. (End)
Previous Showing 11-15 of 15 results.