cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A359280 Powerful numbers that are neither prime powers nor powers of squarefree composites.

Original entry on oeis.org

72, 108, 144, 200, 288, 324, 392, 400, 432, 500, 576, 648, 675, 784, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1936, 1944, 2000, 2025, 2304, 2312, 2500, 2592, 2700, 2704, 2888, 2916, 3087, 3136, 3200, 3267, 3456, 3528, 3600, 3872, 3888, 3969
Offset: 1

Views

Author

Michael De Vlieger, Aug 01 2023

Keywords

Comments

Numbers k such that omega(k) > 1 and for prime power factors p^e | k, multiplicities e > 1, yet the multiplicities are not equal.
Subset of A286708, which in turn is a subset of A361098, itself a subset of A126706, the sequence of numbers neither squarefree nor prime powers.
Since A001694 = Union({1}, A246547, A286708), this sequence is a subset of A001694.

Examples

			Let b(n) = A286708(n).
b(1) = 36 is not in the sequence since rad(36) = A007947(36) = 6, and 36 = 6^2.
b(2) = a(1) = 72 since 72 is not a perfect power of rad(72).
b(3) = 100 = rad(100)^2 = 10^2, so it is not in the sequence.
b(4) = a(2) = 108, since 108 is not a perfect power of rad(108) = 6.
b(5) = a(3) = 144, since 144 is not a perfect power of rad(144) = 6.
b(6) = 196 is not in the sequence since 196 = rad(196)^2 = 14^2, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 5000; s = Rest@ Select[Union@ Flatten@Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Not@*PrimePowerQ]; Select[s, !SameQ @@ FactorInteger[#][[All, -1]] &]
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A359280(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            j = isqrt(x)
            c, l = n+x+3-(y:=x.bit_length())+squarefreepi(j)+sum(squarefreepi(integer_nthroot(x, k)[0]) for k in range(4, y)), 0
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return bisection(f,n,n) # Chai Wah Wu, Feb 09 2025

Formula

This sequence is A286708 \ A303606.
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{k>=2} (zeta(k)/zeta(2*k) - 1) - 1 = 0.094962568855... . - Amiram Eldar, Dec 09 2023

A382422 The product of exponents in the prime factorization of the biquadratefree numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2025

Keywords

Comments

Differs from A375766 and A375768 at n = 1, 31, 34, 35, 38, 39, ... .
All the terms are 3-smooth numbers (A003586).

Crossrefs

Programs

  • Mathematica
    s[n_] := Times @@ FactorInteger[n][[;; , 2]]; biqFreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] < 4; s /@ Select[Range[100], biqFreeQ]
  • PARI
    list(kmax) = {my(e); print1(1, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(vecmax(e) < 4, print1(vecprod(e), ", "))); }

Formula

a(n) = A005361(A046100(n)).
a(n) = 2^A382423(n) * 3^A382424(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 + 1/p^3 - 3/p^4) = 1.57226906210272200398... .
In general, the asymptotic mean of the product of exponents in the prime factorization of the k-free numbers (numbers that are not divisible by a k-th power other than 1), for k >= 2, is zeta(k) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + ... + 1/p^(k-1) - (k-1)/p^k). For k = 2 (squarefree numbers), the mean is 1 since the sequence contains only 1's. The limit when k->oo is zeta(2)*zeta(3)/zeta(6) (A082695).

A070243 a(n) = Card{ k, phi(k) <= n }.

Original entry on oeis.org

2, 5, 5, 9, 9, 13, 13, 18, 18, 20, 20, 26, 26, 26, 26, 32, 32, 36, 36, 41, 41, 43, 43, 53, 53, 53, 53, 55, 55, 57, 57, 64, 64, 64, 64, 72, 72, 72, 72, 81, 81, 85, 85, 88, 88, 90, 90, 101, 101, 101, 101, 103, 103, 105, 105, 108, 108, 110, 110, 119, 119, 119, 119, 127, 127
Offset: 1

Views

Author

Benoit Cloitre, May 11 2002

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-118.
  • Gérald Tenenbaum and Jie Wu, Exercices corrigés de théorie analytique et probabiliste des nombres, Collection SMF, Cours spécialisés, Numero 2, pp. 78-79.

Crossrefs

Partial sums of A014197.

Programs

  • PARI
    for(n=1,150,print1(sum(i=1,100*n,if(sign(eulerphi(i)-n)+1,0,1)+if((eulerphi(i)-n),0,1)),","))
    
  • PARI
    list(nmax) = my(s = 0); for(n = 1, nmax, s += invphiNum(n); print1(s, ", ")); \\ Amiram Eldar, Dec 23 2024, using Max Alekseyev's invphi.gp

Formula

Limit_{n->oo} a(n)/n = zeta(2)*zeta(3)/zeta(6) = 1.943596436820759205057... = A082695.
From Benoit Cloitre, Apr 12 2003: (Start)
a(n) = Sum_{k=1..n} A014197(k).
a(n) = (zeta(2)*zeta(3)/zeta(6))*n + O(n*exp(-c*sqrt(log(n)))) for a suitable constant c > 0. (End)

A183094 a(n) = number of powerful divisors d (excluding 1) of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 1, 3, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

a(n) = number of divisors d of n from set A001694(m) - powerful numbers for m >=2.

Examples

			For n = 12, set of such divisors is {4}; a(12) = 1.
		

Crossrefs

Programs

  • Maple
    f:=  n -> convert(map(t->t[2], ifactors(n)[2]),`*`) - 1; # Robert Israel, Jul 14 2014
  • Mathematica
    powerfulQ[n_] := Min[ Last@# & /@ FactorInteger[n]] > 1; f[n_] := Length@ Select[ Divisors@ n, powerfulQ]; Array[f, 105] (* Robert G. Wilson v, Jul 14 2014 *)

Formula

a(n) = A000005(n) - A183095(n) = A005361(n) - 1.
a(1) = 0, a(p) = 0, a(pq) = 0, a(pq...z) = 0, a(p^k) = k-1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2)*zeta(3)/zeta(6) - 1 = A082695 - 1 = 0.9435964368... . - Amiram Eldar, Jul 30 2022

A211177 Numerator of Sum_{k=1..n}(-1)^k/phi(k), where phi = A000010.

Original entry on oeis.org

-1, 0, -1, 0, -1, 1, 1, 1, 1, 5, 19, 17, 29, 13, 21, 13, 47, 181, 503, 593, 533, 121, 1259, 1457, 6889, 7549, 7109, 7769, 52403, 59333, 11497, 6095, 29089, 61643, 59333, 63953, 62413, 7277, 21061, 2777, 10877, 11647, 3809, 3963, 1438, 271, 3064, 51439, 7217, 7493
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2013

Keywords

Examples

			Fractions begin with -1, 0, -1/2, 0, -1/4, 1/4, 1/12, 1/3, 1/6, 5/12, 19/60, 17/30, ...
		

Crossrefs

Cf. A000010, A028415, A211178 (denominators).

Programs

  • Mathematica
    Numerator @ Accumulate[Table[(-1)^k/EulerPhi[k], {k, 1, 50}]] (* Amiram Eldar, Nov 20 2020 *)
  • PARI
    a(n)=numerator(sum(k=1,n,(-1)^k/eulerphi(k)))

Formula

a(n)/A211178(n) = c*log(n) + O(1) with a suitable constant c (see ref).
The constant above is c = zeta(2)*zeta(3)/(3*zeta(6)) = (1/3) * A082695. - Amiram Eldar, Nov 20 2020
More accurately, a(n)/A211178(n) ~ (A/3) * (log(n) + gamma - B - 8*log(2)/3) + O(log(n)^(5/3)/n), where A = zeta(2)*zeta(3)/zeta(6) (A082695), gamma is Euler's constant (A001620), and B = Sum_{p prime} log(p)/(p^2-p+1) (A085609) (Bordellès and Cloitre, 2013; Tóth, 2017). - Amiram Eldar, Oct 14 2022

Extensions

More terms from Amiram Eldar, Nov 20 2020

A211178 Denominator of Sum_{k=1..n}(-1)^k/phi(k), where phi = A000010.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 12, 3, 6, 12, 60, 30, 60, 20, 40, 20, 80, 240, 720, 720, 720, 144, 1584, 1584, 7920, 7920, 7920, 7920, 55440, 55440, 11088, 5544, 27720, 55440, 55440, 55440, 55440, 6160, 18480, 2310, 9240, 9240, 3080, 3080, 1155, 210, 2415, 38640, 5520, 5520
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2013

Keywords

Crossrefs

Cf. A000010, A082695, A211177 (numerators).

Programs

  • Mathematica
    Denominator @ Accumulate[Table[(-1)^k/EulerPhi[k], {k, 1, 50}]] (* Amiram Eldar, Nov 20 2020 *)
  • PARI
    a(n)=denominator(sum(k=1, n, (-1)^k/eulerphi(k)))

Formula

A211177(n)/a(n) = c*log(n) + O(1) with a suitable constant c (see ref).
The constant above is c = zeta(2)*zeta(3)/(3*zeta(6)) = (1/3) * A082695. - Amiram Eldar, Nov 20 2020

Extensions

More terms from Amiram Eldar, Nov 20 2020

A068885 Numerator of Sum_{k=1..n} k/phi(k).

Original entry on oeis.org

1, 3, 9, 13, 31, 43, 143, 167, 185, 215, 1141, 1321, 231, 763, 3277, 3517, 7289, 8009, 24787, 26587, 27847, 29431, 332021, 355781, 365681, 382841, 394721, 413201, 2949827, 3157727, 643003, 665179, 3417371, 3535181, 3616031, 3782351, 1279777, 3956371, 4046461
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 3, 9/2, 13/2, 31/4, 43/4, 143/12, 167/12, 185/12, ...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section I.27, page 29.

Crossrefs

Cf. A069947 (denominators), A000010, A028415, A048049, A082695.

Programs

  • Mathematica
    Numerator @ Accumulate @ Table[k/EulerPhi[k], {k, 1, 40}] (* Amiram Eldar, Sep 18 2022 *)
  • PARI
    a(n) = numerator(sum(k=1, n, k/eulerphi(k))); \\ Michel Marcus, Sep 18 2022

Formula

a(n)/A069947(n) ~ c * n - log(n)/2 + O(log(n)^(2/3)), where c = zeta(2)*zeta(3)/zeta(6) (A082695) (Sitaramachandrarao, 1985). - Amiram Eldar, Sep 18 2022

A079551 a(n) = Sum_{primes p <= n} d(p-1), where d() = A000005.

Original entry on oeis.org

0, 0, 1, 3, 3, 6, 6, 10, 10, 10, 10, 14, 14, 20, 20, 20, 20, 25, 25, 31, 31, 31, 31, 35, 35, 35, 35, 35, 35, 41, 41, 49, 49, 49, 49, 49, 49, 58, 58, 58, 58, 66, 66, 74, 74, 74, 74, 78, 78, 78, 78, 78, 78, 84, 84, 84, 84, 84, 84, 88, 88, 100, 100, 100, 100, 100, 100, 108, 108, 108, 108
Offset: 0

Views

Author

N. J. A. Sloane, Jan 24 2003

Keywords

References

  • Yuri V. Linnik, The dispersion method in binary additive problems, American Mathematical Society, 1963, chapter VIII.
  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer, 2006, section II.11, p. 49.

Crossrefs

Row sums of triangle A143540. - Gary W. Adamson, Aug 23 2008

Programs

  • Mathematica
    a[n_] := Sum[DivisorSigma[0, p-1], {p, Select[Range[n], PrimeQ]}]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 26 2015 *)
  • PARI
    a(n) = sum(p=1, n, if (isprime(p), numdiv(p-1))); \\ Michel Marcus, Aug 03 2018

Formula

Several asymptotic estimates are known: see Sándor et al.
a(n) ~ (zeta(2)*zeta(3)/zeta(6)) * n. - Amiram Eldar, Jul 22 2019

A322965 Numerator of Sum_{d | n} 1/rad(d).

Original entry on oeis.org

1, 3, 4, 2, 6, 2, 8, 5, 5, 9, 12, 8, 14, 12, 8, 3, 18, 5, 20, 12, 32, 18, 24, 10, 7, 21, 2, 16, 30, 12, 32, 7, 16, 27, 48, 10, 38, 30, 56, 3, 42, 16, 44, 24, 2, 36, 48, 4, 9, 21, 24, 28, 54, 3, 72, 20, 80, 45, 60, 16, 62, 48, 40, 4, 84, 24, 68, 36, 32, 72, 72, 25, 74, 57, 28
Offset: 1

Views

Author

David S. Metzler, Dec 31 2018

Keywords

Comments

Let rad(n) be the radical of n, which equals the product of all prime factors of n (A007947). Let g(n) = 1/rad(n) and let f(n) = Sum_{d | n} g(d). This is a multiplicative function whose value on a prime power is f(p^k) = 1 + k/p. Hence f is a weighted divisor-counting function that weights divisors d higher when they have few and small prime divisors themselves. The sequence a(n) lists the numerators of the fractions f(n) in lowest terms.
If p is prime, then a(p^k) = p+k if p does not divide k, 1 + k/p if it does. In particular, a(p^p) = 2. - Robert Israel, Jan 25 2019

Examples

			The divisors of 12 are 1,2,3,4,6,12, so f(12) = 1 + (1/2) + (1/3) + (1/2) + (1/6) + (1/6) = 8/3 and a(12) = 8. Alternately, since f is multiplicative, f(12) = f(4)*f(3) = (1+2/2)*(1+1/3) = 8/3.
		

Crossrefs

Cf. A007947 (radical), A322966 (denominators), A008473 (unreduced numerators, i.e., f(n)*rad(n)), A082695.
Numbers n where f(n) increases to a record: A322447.

Programs

  • Maple
    rad:= n -> convert(numtheory:-factorset(n),`*`):
    f:= proc(n) numer(add(1/rad(d),d=numtheory:-divisors(n))) end proc:
    map(f, [$1..100]); # Robert Israel, Jan 25 2019
  • Mathematica
    Array[Numerator@ DivisorSum[#, 1/Apply[Times, FactorInteger[#][[All, 1]]] &] &, 71] (* Michael De Vlieger, Jan 19 2019 *)
  • PARI
    rad(n) = factorback(factor(n)[, 1]); \\ A007947
    a(n) = numerator(sumdiv(n, d, 1/rad(d))); \\ Michel Marcus, Jan 10 2019

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A322966(k) = zeta(2)*zeta(3)/zeta(6) (A082695). - Amiram Eldar, Dec 09 2023

Extensions

More terms from Michel Marcus, Jan 19 2019

A339925 Decimal expansion of 105*zeta(3)/Pi^4.

Original entry on oeis.org

1, 2, 9, 5, 7, 3, 0, 9, 5, 7, 8, 8, 0, 5, 0, 6, 1, 3, 6, 7, 0, 4, 7, 1, 3, 5, 7, 5, 0, 4, 9, 8, 4, 2, 2, 9, 1, 4, 5, 8, 5, 7, 2, 3, 3, 4, 5, 1, 1, 8, 7, 0, 4, 7, 7, 3, 5, 1, 0, 9, 0, 4, 5, 9, 2, 6, 7, 0, 2, 3, 3, 0, 0, 4, 6, 2, 3, 6, 9, 3, 6, 9, 2, 9, 8, 7, 8, 6, 0, 6, 7, 2, 1, 4, 0, 7, 4, 2, 0, 0, 7, 1, 2, 7
Offset: 1

Views

Author

Artur Jasinski, Dec 23 2020

Keywords

Examples

			1.295730957880506136704713575049842291458572334511870477351090459267...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[105 Zeta[3]/Pi^4, 105]][[1]]
  • PARI
    prodeulerrat(1+1/(p*(p-1)),1,3) \\ Hugo Pfoertner, Dec 23 2020

Formula

Equals Product_{p>=3} 1+1/(p*(p-1)) where p are successive odd primes.
Equals A082695*2/3.
Equals Sum_{k>=1} A001615(k)/k^4. - Amiram Eldar, Jan 25 2024
Previous Showing 31-40 of 56 results. Next