cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A083120 Numbers that are congruent to {0, 2, 4, 5, 7, 9, 10} mod 12.

Original entry on oeis.org

0, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 34, 36, 38, 40, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 58, 60, 62, 64, 65, 67, 69, 70, 72, 74, 76, 77, 79, 81, 82, 84, 86, 88, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 106, 108, 110
Offset: 1

Views

Author

James Ingram (j.ingram(AT)t-online.de), Jun 01 2003

Keywords

Comments

Key-numbers of the pitches of a Mixolydian mode scale on a standard chromatic keyboard, with root = 0. A Mixolydian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone G.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): this sequence
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 2, 4, 5, 7, 9, 10]]; // Wesley Ivan Hurt, Jul 20 2016
    
  • Maple
    A083120:= n-> 12*floor((n-1)/7)+[0, 2, 4, 5, 7, 9, 10][((n-1) mod 7)+1]:
    seq(A083120(n), n=1..100); # Wesley Ivan Hurt, Jul 20 2016
  • Mathematica
    Select[Range[0,120], MemberQ[{0,2,4,5,7,9,10}, Mod[#,12]]&] (* Harvey P. Dale, Feb 20 2011 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 4, 5, 7, 9, 10, 12}, 70] (* Jianing Song, Sep 22 2018 *)
    Quotient[4 (3 # - 2), 7] & /@ Range[96] (* Federico Provvedi, Nov 06 2023 *)
  • PARI
    a(n)=[-2, 0, 2, 4, 5, 7, 9][n%7+1] + n\7*12 \\ Charles R Greathouse IV, Jul 21 2016
    
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x^2*(2+2*x+x^2+2*x^3+2*x^4+x^5+2*x^6)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018

Formula

G.f.: x^2*(2 + 2*x + x^2 + 2*x^3 + 2*x^4 + x^5 + 2*x^6)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 77 + 5*(n mod 7) - 2*((n + 1) mod 7) - 2*((n + 2) mod 7) + 5*((n + 3) mod 7) - 2*((n + 4) mod 7) - 2*((n + 5) mod 7) - 2*((n + 6) mod 7))/49.
a(7k) = 12k - 2, a(7k-1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 8, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018
a(n) = floor(4 * (3*n - 2) / 7). Federico Provvedi, Nov 06 2023

A000210 A Beatty sequence: floor(n*(e-1)).

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 18, 20, 22, 24, 25, 27, 29, 30, 32, 34, 36, 37, 39, 41, 42, 44, 46, 48, 49, 51, 53, 54, 56, 58, 60, 61, 63, 65, 67, 68, 70, 72, 73, 75, 77, 79, 80, 82, 84, 85, 87, 89, 91, 92, 94, 96, 97, 99, 101, 103, 104, 106, 108, 109, 111, 113, 115, 116
Offset: 1

Views

Author

Keywords

Comments

The first 38 terms coincide with the corresponding terms of A082977, i.e., numbers that are congruent to {0, 1, 3, 5, 6, 8, 10} mod 12. - Giovanni Resta, Mar 24 2006

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    a:= n-> floor (n*(exp(1)-1)): seq (a(n), n=1..200); # Alois P. Heinz, Aug 25 2008
  • Mathematica
    Table[Floor[n*(E - 1)], {n, 0, 100}] (* T. D. Noe, Jan 21 2013 *)

Extensions

More terms from James Sellers, Jul 06 2000

A319451 Numbers that are congruent to {0, 3, 6} mod 12; a(n) = 3*floor(4*n/3).

Original entry on oeis.org

0, 3, 6, 12, 15, 18, 24, 27, 30, 36, 39, 42, 48, 51, 54, 60, 63, 66, 72, 75, 78, 84, 87, 90, 96, 99, 102, 108, 111, 114, 120, 123, 126, 132, 135, 138, 144, 147, 150, 156, 159, 162, 168, 171, 174, 180, 183, 186, 192, 195, 198, 204, 207, 210, 216, 219, 222, 228
Offset: 0

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Key-numbers of the pitches of a diminished chord on a standard chromatic keyboard, with root = 0.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Third chords:
Major chord (F,C,G): A083030
Minor chord (D,A,E): A083031
Diminished chord (B): this sequence
Seventh chords:
Major seventh chord (F,C): A319280
Dominant seventh chord (G): A083032
Minor seventh chord (D,A,E): A319279
Half-diminished seventh chord (B): A319452

Programs

  • GAP
    Filtered([0..230],n->n mod 12 = 0 or n mod 12 = 3 or n mod 12 = 6); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    [n : n in [0..150] | n mod 12 in [0, 3, 6]]
    
  • Maple
    seq(3*floor(4*n/3),n=0..60); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    Select[Range[0, 200], MemberQ[{0, 3, 6}, Mod[#, 12]]&]
    LinearRecurrence[{1, 0, 1, -1}, {0, 3, 6, 12}, 100]
    Table[4n-1+Sin[Pi/3(2n+1)]/Sin[Pi/3],{n,0,99}] (* Federico Provvedi, Oct 23 2018 *)
  • PARI
    a(n)=3*(4*n\3)
    
  • Python
    for n in range(0,60): print(3*int(4*n/3), end=", ") # Stefano Spezia, Dec 07 2018

Formula

a(n) = a(n-3) + 12 for n > 2.
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 3.
G.f.: 3*(1 + x + 2*x^2)/((1 - x)*(1 - x^3)).
a(n) = 3*A004773(n) = 3*(floor(n/3) + n).
a(n) = 4*n - 1 + sin((Pi/3)*(2*n + 1))/sin(Pi/3). - Federico Provvedi, Oct 23 2018
E.g.f.: (3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/(3*exp(x/2)) - exp(x)*(1 - 4*x). - Franck Maminirina Ramaharo, Nov 27 2018
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/24 + (2-sqrt(2))*log(2)/24 + sqrt(2)*log(2+sqrt(2))/12. - Amiram Eldar, Dec 30 2021

A319279 Numbers that are congruent to {0, 3, 7, 10} mod 12.

Original entry on oeis.org

0, 3, 7, 10, 12, 15, 19, 22, 24, 27, 31, 34, 36, 39, 43, 46, 48, 51, 55, 58, 60, 63, 67, 70, 72, 75, 79, 82, 84, 87, 91, 94, 96, 99, 103, 106, 108, 111, 115, 118, 120, 123, 127, 130, 132, 135, 139, 142, 144, 147, 151, 154, 156, 159, 163, 166, 168, 171, 175, 178
Offset: 1

Views

Author

Jianing Song, Sep 16 2018

Keywords

Comments

Key-numbers of the pitches of a minor seventh chord on a standard chromatic keyboard, with root = 0.
Apart from the offset the same as A013574. - R. J. Mathar, Sep 27 2018

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Third chords:
Major chord (F,C,G): A083030
Minor chord (D,A,E): A083031
Diminished chord (B): A319451
Seventh chords:
Major seventh chord (F,C): A319280
Dominant seventh chord (G): A083032
Minor seventh chord (D,A,E): this sequence
Half-diminished seventh chord (B): A319452

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 3, 7, 10]]
    
  • Mathematica
    Select[Range[0, 200], MemberQ[{0, 3, 7, 10}, Mod[#, 12]]&]
    LinearRecurrence[{1, 0, 0, 1, -1}, {0, 3, 7, 10, 12}, 100]
  • PARI
    x='x+O('x^99); concat(0, Vec(x^2*(3+x+2*x^2)/((x^2+1)*(x-1)^2)))

Formula

a(n) = a(n-4) + 12 for n > 4.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: x^2*(3 + x + 2*x^2)/((x^2 + 1)*(x - 1)^2).
a(n) = (6*n - 5 + sqrt(2)*cos(Pi*n/2 + Pi/4))/2.
E.g.f.: ((6x - 5)*e^x + sqrt(2)*cos(x + Pi/4) + 4)/2.

A319280 Numbers that are congruent to {0, 4, 7, 11} mod 12.

Original entry on oeis.org

0, 4, 7, 11, 12, 16, 19, 23, 24, 28, 31, 35, 36, 40, 43, 47, 48, 52, 55, 59, 60, 64, 67, 71, 72, 76, 79, 83, 84, 88, 91, 95, 96, 100, 103, 107, 108, 112, 115, 119, 120, 124, 127, 131, 132, 136, 139, 143, 144, 148, 151, 155, 156, 160, 163, 167, 168, 172, 175, 179
Offset: 1

Views

Author

Jianing Song, Sep 16 2018

Keywords

Comments

Key-numbers of the pitches of a major seventh chord on a standard chromatic keyboard, with root = 0.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Third chords:
Major chord (F,C,G): A083030
Minor chord (D,A,E): A083031
Diminished chord (B): A319451
Seventh chords:
Major seventh chord (F,C): this sequence
Dominant seventh chord (G): A083032
Minor seventh chord (D,A,E): A319279
Half-diminished seventh chord (B): A319452

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 4, 7, 11]];
    
  • Mathematica
    Select[Range[0, 200], MemberQ[{0, 4, 7, 11}, Mod[#, 12]]&]
    LinearRecurrence[{1, 0, 0, 1, -1}, {0, 4, 7, 11, 12}, 100]
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x^2*(4+3*x+4*x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2)))

Formula

a(n) = a(n-4) + 12 for n > 4.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: x^2*(4 + 3*x + 4*x^2 + x^3)/((1 + x)*(1 + x^2)*(1 - x)^2).
a(n) = (6*n - 4 + (-1)^n + sqrt(2)*cos(Pi*n/2 + Pi/4))/2.
E.g.f.: ((6*x - 3)*cosh(x) + (6*x - 5)*sinh(x) + sqrt(2)*cos(x + Pi/4) + 2)/2.
Sum_{n>=2} (-1)^n/a(n) = log(3)/8 + log(2+sqrt(3))/(2*sqrt(3)) - 5*sqrt(3)*Pi/72. - Amiram Eldar, Dec 30 2021

A319452 Numbers that are congruent to {0, 3, 6, 10} mod 12.

Original entry on oeis.org

0, 3, 6, 10, 12, 15, 18, 22, 24, 27, 30, 34, 36, 39, 42, 46, 48, 51, 54, 58, 60, 63, 66, 70, 72, 75, 78, 82, 84, 87, 90, 94, 96, 99, 102, 106, 108, 111, 114, 118, 120, 123, 126, 130, 132, 135, 138, 142, 144, 147, 150, 154, 156, 159, 162, 166, 168, 171, 174, 178
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Key-numbers of the pitches of a half-diminished chord on a standard chromatic keyboard, with root = 0.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Third chords:
Major chord (F,C,G): A083030
Minor chord (D,A,E): A083031
Diminished chord (B): A319451
Seventh chords:
Major seventh chord (F,C): A319280
Dominant seventh chord (G): A083032
Minor seventh chord (D,A,E): A319279
Half-diminished seventh chord (B): this sequence

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 3, 6, 10]]
    
  • Mathematica
    Select[Range[0, 200], MemberQ[{0, 3, 6, 10}, Mod[#, 12]]&]
    LinearRecurrence[{1, 0, 0, 1, -1}, {0, 3, 6, 10, 12}, 100]
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x^2*(3+3*x+4*x^2+2*x^3)/((1+x)*(1+x^2)*(1-x)^2)))

Formula

a(n) = a(n-4) + 12 for n > 4.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: x^2*(3 + 3*x + 4*x^2 + 2*x^3)/((1 + x)*(1 + x^2)*(1 - x)^2).
a(n) = (12*n - 11 + (-1)^n + 2*cos(Pi*n/2))/4.
E.g.f.: ((6*x - 5)*cosh(x) + (6*x - 6)*sinh(x) + cos(x) + 4)/2.
Sum_{n>=2} (-1)^n/a(n) = log(12)/8 - (sqrt(3)-1)*Pi/24. - Amiram Eldar, Dec 30 2021

A047329 Numbers that are congruent to {1, 3, 5, 6} mod 7.

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 19, 20, 22, 24, 26, 27, 29, 31, 33, 34, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 54, 55, 57, 59, 61, 62, 64, 66, 68, 69, 71, 73, 75, 76, 78, 80, 82, 83, 85, 87, 89, 90, 92, 94, 96, 97, 99, 101, 103, 104, 106, 108, 110, 111
Offset: 1

Views

Author

Keywords

References

  • Robert Fludd, Utriusque Cosmi ... Historia, Oppenheim, 1617-1619.

Crossrefs

Programs

Formula

a(n) = floor((7n-1)/4). - Gary Detlefs, Mar 07 2010
G.f.: (x*(1+2*x+2*x^2+x^3+x^4)) / ((1+x)*(x^2+1)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (14n-5-i^(2n)-(1+i)*i^(-n)-(1-i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047280(n), a(2n-1) = A047383(n). (End)
E.g.f.: (4 - sin(x) - cos(x) + (7*x - 2)*sinh(x) + (7*x - 3)*cosh(x))/4. - Ilya Gutkovskiy, May 21 2016

Extensions

Fludd reference from Brendan McKay, May 27 2003
More terms from Wesley Ivan Hurt, May 21 2016
Previous Showing 11-17 of 17 results.