cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 143 results. Next

A221054 Numbers whose distinct prime factors can be partitioned into two equal sums.

Original entry on oeis.org

1, 30, 60, 70, 90, 120, 140, 150, 180, 240, 270, 280, 286, 300, 350, 360, 450, 480, 490, 540, 560, 572, 600, 646, 700, 720, 750, 810, 900, 960, 980, 1080, 1120, 1144, 1200, 1292, 1350, 1400, 1440, 1500, 1620, 1750, 1798, 1800, 1920, 1960, 2145, 2160, 2240, 2250, 2288, 2310, 2400, 2430, 2450, 2584, 2700, 2730, 2800, 2880, 3000, 3135
Offset: 1

Views

Author

Keywords

Comments

This is a superset of 2*product of twin primes, A071142.

Crossrefs

Cf. A175592 (multiplicity of prime factors allowed).
Cf. A071139-A071147, especially A071140.

Programs

  • Haskell
    a221054 n = a221054_list !! (n-1)
    a221054_list = filter (z 0 0 . a027748_row) $ tail a005843_list where
       z u v []     = u == v
       z u v (p:ps) = z (u + p) v ps || z u (v + p) ps
    -- Reinhard Zumkeller, Apr 18 2013
    
  • Mathematica
    q[n_] := Module[{p = FactorInteger[n][[;; , 1]], sum, x}, sum = Total[p]; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, p}], x][[1 + sum/2]] > 0]; Select[Range[3200], q] (* Amiram Eldar, May 31 2025 *)
  • PARI
    isok(k) = my(f=factor(k), nb=#f~); for (i=0,2^nb-1, my(v=Vec(Vecrev(binary(i)), nb)); if (sum(k=1, nb, if (v[k], f[k,1])) == sum(k=1, nb, if (!v[k], f[k,1])), return(1));); \\ Michel Marcus, May 31 2025

Extensions

Missing terms inserted by Michel Marcus, May 31 2025

A335142 Nonunitary Zumkeller numbers: numbers whose set of nonunitary divisors is nonempty and can be partitioned into two disjoint sets of equal sum.

Original entry on oeis.org

24, 48, 54, 80, 96, 112, 120, 150, 160, 168, 180, 192, 216, 224, 240, 252, 264, 270, 280, 294, 312, 320, 336, 352, 360, 378, 384, 396, 408, 416, 432, 448, 456, 468, 480, 486, 504, 528, 540, 552, 560, 594, 600, 612, 624, 630, 640, 672, 684, 696, 702, 704, 720, 726
Offset: 1

Views

Author

Amiram Eldar, May 25 2020

Keywords

Comments

Apparently, most of the terms are nonunitary abundant (A064597). Term that are nonunitary deficient (A064598) are 54, 150, 270, 294, 378, ...

Examples

			24 is a term since its set of nonunitary divisors, {2, 4, 6, 12}, can be partitioned into the two disjoint sets, {2, 4, 6} and {12}, whose sum is equal: 2 + 4 + 6 = 12.
		

Crossrefs

Programs

  • Mathematica
    nuzQ[n_] := Module[{d = Select[Divisors[n], GCD[#, n/#] > 1 &], sum, x}, sum = Plus @@ d; sum > 0 && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[1000], nuzQ]

A335197 Infinitary Zumkeller numbers: numbers whose set of infinitary divisors can be partitioned into two disjoint sets of equal sum.

Original entry on oeis.org

6, 24, 30, 40, 42, 54, 56, 60, 66, 70, 72, 78, 88, 90, 96, 102, 104, 114, 120, 138, 150, 168, 174, 186, 210, 216, 222, 246, 258, 264, 270, 280, 282, 294, 312, 318, 330, 354, 360, 366, 378, 384, 390, 402, 408, 420, 426, 438, 440, 456, 462, 474, 480, 486, 498, 504
Offset: 1

Views

Author

Amiram Eldar, May 26 2020

Keywords

Examples

			6 is a term since its set of infinitary divisors, {1, 2, 3, 6}, can be partitioned into the two disjoint sets, {1, 2, 3} and {6}, whose sum is equal: 1 + 2 + 3 = 6.
		

Crossrefs

The infinitary version of A083207.
Subsequence of A129656.

Programs

  • Mathematica
    infdivs[n_] := If[n == 1, {1}, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infZumQ[n_] := Module[{d = infdivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[500], infZumQ] (* after Michael De Vlieger at A077609 *)

A376880 Numbers that have Zumkeller divisors.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270
Offset: 1

Views

Author

Peter Luschny, Oct 20 2024

Keywords

Comments

d is a Zumkeller divisor of n if and only if d is a divisor of n and is Zumkeller (A083207).
The first difference from A023196 is 748, which is abundant (sigma(748) = 1512 > 2*748) but has no Zumkeller divisors.

Examples

			The Zumkeller divisors of 80 are {20, 40, 80}, so 80 is a term.
The divisors of 81 are {1, 3, 9, 27, 81}, none of which is Zumkeller, so 81 is not a term.
		

Crossrefs

Positions of terms > 1 in A376882, terms > 0 in A378446.

Programs

  • Maple
    with(NumberTheory):
    isZumkeller := proc(n) option remember; local s, p, i, P;
        s := SumOfDivisors(n);
        if s::odd or s < n*2 then false else
        P := mul(1 + x^i, i in Divisors(n));
        is(0 < coeff(P, x, s/2)) fi end:
    select(n -> ormap(isZumkeller, Divisors(n)), [seq(1..270)]);
  • Mathematica
    znQ[n_]:=Length[Select[{#, Complement[Divisors[n], #]}&/@Most[Rest[ Subsets[ Divisors[ n]]]], Total[#[[1]]]==Total[#[[2]]]&]]>0; zn=Select[Range[300], znQ] (* zn from A083207 *) ;Select[Range[270],IntersectingQ[Divisors[#],zn]&] (* James C. McMahon, Oct 23 2024 *)

Extensions

Incorrect comment removed by Peter Luschny, Dec 02 2024

A246198 Half-Zumkeller numbers: numbers n whose proper positive divisors can be partitioned into two disjoint sets whose sums are equal.

Original entry on oeis.org

6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84, 88, 90, 96, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 150, 156, 160, 168, 174, 176, 180, 186, 192, 198, 204, 208, 210, 216, 220, 222, 224, 225, 228, 234, 240, 246, 252, 258, 260, 264
Offset: 1

Views

Author

Chai Wah Wu, Aug 18 2014

Keywords

Comments

All even half-Zumkeller numbers are in A083207, i.e. they are Zumkeller numbers (see Clark et al. 2008). The first 47 terms coincide with A083207. 225 is the first number in the sequence that is not a Zumkeller number.

Examples

			Proper divisors of 225 are 1, 3, 5, 9, 15, 25, 45, 75 and 1+3+15+25+45=5+9+75.
		

References

  • S. Clark et al., Zumkeller numbers, Mathematical Abundance Conference, April 2008.

Crossrefs

Cf. A083207.

Programs

  • Maple
    filter:= proc(n) local L,s,t,nL,B,j,k;
       L:= numtheory:-divisors(n) minus {n};
       s:= convert(L,`+`);
       if s::odd then return false fi;
       t:= s/2;
       nL:= nops(L);
       B:= Array(0..t,1..nL);
       B[0,1]:= 1;
       B[L[1],1]:= 1;
       for j from 2 to nL do
          B[..,j]:= B[..,j-1];
          for k from L[j] to t do
             B[k,j]:= B[k,j] + B[k-L[j],j-1]
          od:
          if B[t,j] > 0 then return true fi;
       od:
       false
    end:
    select(filter, [$2..300]); # Robert Israel, Aug 19 2014
  • Mathematica
    filterQ[n_] := Module[{L, s, t, nL, B, j, k},
      L = Most[Divisors[n]];
      s = Total[L];
      If[OddQ[s], Return[False]];
      t = s/2;
      nL = Length[L];
      B[, ] = 0;
      B[0, 1] = 1;
      B[L[[1]], 1] = 1;
      For[j = 2, j <= nL, j++,
        Do[B[k, j] = B[k, j-1], {k, 0, t}];
        For[k = L[[j]], k <= t, k++,
          B[k, j] = B[k, j] + B[k-L[[j]], j-1]
        ];
        If[ B[t, j] > 0, Return[True]];
      ];
      False
    ];
    Select[Range[2, 300], filterQ] (* Jean-François Alcover, Mar 04 2019, after Robert Israel *)
    hzQ[n_] := Module[{d = Most @ Divisors[n], sum, x}, sum = Plus @@ d; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[2, 1000], hzQ] (* Amiram Eldar, May 03 2020 *)
  • Python
    from sympy.combinatorics.subsets import Subset
    from sympy import divisors
    A246198 = []
    for n in range(2,10**3):
        d = divisors(n)
        d.remove(n)
        s, dmax = sum(d), max(d)
        if not s % 2 and 2*dmax <= s:
            d.remove(dmax)
            s2 = s/2-dmax
            for x in range(2**len(d)):
                if sum(Subset.unrank_binary(x,d).subset) == s2:
                    A246198.append(n)
                    break
    
  • Python
    from sympy import divisors
    import numpy as np
    A246198 = []
    for n in range(2, 10**3):
        d = divisors(n)
        d.remove(n)
        s, dmax = sum(d), max(d)
        if not s % 2 and 2*dmax <= s:
            d.remove(dmax)
            s2, ld = int(s/2-dmax), len(d)
            z = np.zeros((ld+1, s2+1), dtype=int)
            for i in range(1, ld+1):
                y = min(d[i-1], s2+1)
                z[i, range(y)] = z[i-1, range(y)]
                z[i, range(y, s2+1)] = np.maximum(z[i-1, range(y, s2+1)], z[i-1, range(0, s2+1-y)]+y)
                if z[i, s2] == s2:
                    A246198.append(n)
                    break
    # Chai Wah Wu, Aug 19 2014

A292544 Numbers h such that 2^phi(h) == phi(h) (mod h).

Original entry on oeis.org

1, 12, 40, 48, 60, 192, 544, 640, 680, 704, 768, 816, 960, 1020, 1664, 3072, 10240, 11008, 12288, 13760, 15360, 19456, 24320, 49152, 83968, 125952, 131584, 139264, 139808, 163840, 164480, 174080, 174760, 196608, 197376, 208896, 209712, 245760, 246720, 261120, 262140, 720896, 786432
Offset: 1

Views

Author

Max Alekseyev and Altug Alkan, Sep 18 2017

Keywords

Comments

Conjecture: For n > 1, a(n) is a Zumkeller number (A083207) [confirmed for n up to 47]. - Ivan N. Ianakiev, Sep 22 2017

Examples

			704 = 11*2^6 is a term since phi(11*2^6) = 5*2^6 and 11*2^6 divides 2^(5*2^6) - 5*2^6.
		

Crossrefs

Programs

  • Mathematica
    {1}~Join~Select[Range[10^6], Function[n, # == PowerMod[2, #, n] &@ EulerPhi@ n]] (* Michael De Vlieger, Sep 18 2017 *)
  • PARI
    isok(n) = Mod(2, n)^eulerphi(n)==eulerphi(n);

Formula

Let m be an odd number, z = A007733(m) and k, 0 <= k < z, be such that phi(m) == 2^k (mod m); then m*2^(i*z - k + 1) belongs to this sequence for all i >= 1. And this is a general form of the terms of this sequence.
Some families of solutions of the form m*2^(i*z - k + 1):
If m = 3, then z = 2 and k = 1 ==> 3*2^(2*i) is a term for all i >= 1.
If m = 5, then z = 4 and k = 2 ==> 5*2^(4*i-1) is a term for all i >= 1.
If m = 7, then z = 3 but k does not exist ==> no term with odd part equal to 7.
If m = 15, then z = 4 and k = 3 ==> 15*2^(4*i-2) is a term for all i >= 1.
If m = 77, then z = 30 and k = 14 ==> 77*2^(30*i-13) is a term for all i >= 1.

A326133 Numbers n for which sigma(n) > A005187(n).

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 110, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272, 276, 280, 282, 288, 294, 300
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2019

Keywords

Comments

Differs from A023196 for the first time at the 28th term, which here is 110, which is not included in A023196.
Note that as there is at least one odd number (815634435) in A326138, it means that A005231 does not contain all odd terms of this sequence.

Crossrefs

Positions of negative terms in A294898.
Cf. A000396, A005231, A083207, A111592, A326131, A326138 (subsequences).

Programs

  • Mathematica
    Select[Range[300], DivisorSigma[1, #] > 2*# - DigitCount[2*#, 2, 1] &] (* Amiram Eldar, Aug 06 2023 *)
  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    isA326133(n) = (sigma(n)>A005187(n));

A335215 Bi-unitary Zumkeller numbers: numbers whose set of bi-unitary divisors can be partitioned into two disjoint sets of equal sum.

Original entry on oeis.org

6, 24, 30, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 88, 90, 96, 102, 104, 114, 120, 138, 150, 160, 162, 168, 174, 186, 192, 210, 216, 222, 224, 240, 246, 258, 264, 270, 280, 282, 288, 294, 312, 318, 320, 330, 336, 352, 354, 360, 366, 378, 384, 390, 402
Offset: 1

Views

Author

Amiram Eldar, May 27 2020

Keywords

Examples

			6 is a term since its set of bi-unitary divisors, {1, 2, 3, 6}, can be partitioned into 2 disjoint sets, whose sum is equal: 1 + 2 + 3 = 6.
		

Crossrefs

The bi-unitary version of A083207.
Subsequence of A292982.

Programs

  • Mathematica
    uDivs[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; bDivs[n_] := Select[Divisors[n], Last @ Intersection[uDivs[#], uDivs[n/#]] == 1 &]; bzQ[n_] := Module[{d = bDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[10^3], bzQ]

A335218 Exponential Zumkeller numbers: numbers whose exponential divisors can be partitioned into two disjoint subsets of equal sum.

Original entry on oeis.org

36, 180, 252, 396, 468, 612, 684, 828, 900, 1044, 1116, 1260, 1332, 1476, 1548, 1692, 1764, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3600, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4356, 4500, 4572, 4716, 4788, 4900
Offset: 1

Views

Author

Amiram Eldar, May 27 2020

Keywords

Comments

First differs from A318100 at n = 49: 4900 is a term that is not an exponential pseudoperfect number.

Examples

			36 is a term since its exponential divisors, {6, 12, 18, 36}, can be partitioned into 2 disjoint sets whose sum is equal: 6 + 12 + 18 = 36.
		

Crossrefs

The exponential version of A083207.
Subsequence of A129575.
A054979 is a subsequence.

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; eDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expDivQ[n, #] &]]; ezQ[n_] := Module[{d = eDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[10^4], ezQ]

A347063 Double Zumkeller numbers: numbers whose set of divisors can be partitioned into two disjoint subsets with equal sums and equal cardinalities.

Original entry on oeis.org

24, 30, 42, 48, 54, 60, 66, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 140, 150, 156, 160, 168, 174, 180, 186, 192, 198, 204, 210, 216, 220, 222, 224, 228, 240, 246, 252, 258, 260, 264, 270, 276, 280, 282, 300, 306, 308, 312, 318, 320, 330, 336, 340, 342
Offset: 1

Views

Author

Ivan N. Ianakiev, Aug 15 2021

Keywords

Comments

If x is a Zumkeller number, then so is 2x. Conjecturally, if y is a term of this sequence, then so is 2y.
If y is a term of this sequence, then so is p*y, where p is a prime that is coprime to y. Proof: Let D = {d_1,d_2,...,d_k} be the set of divisors of y. Let E be the set of divisors of p*y. Except for the divisors of y E contains their products with p. In other words, E = {d_1,d_2,...,d_2k}, meaning that the cardinality of E is twice the cardinality of D. Those additional divisors are F = {p*d_1,p*d_2,...,p*d_k}. Since D can be partitioned into two disjoint subsets with equal sums and cardinalities by definition, this must be true about F and also about E = D union F. QED. - Ivan N. Ianakiev, Nov 20 2021
It seems that for k>=1 all numbers of the form 18k+12 are terms. Verified for k in [1, 45]. - Ivan N. Ianakiev, Oct 01 2024

Examples

			The set of divisors of 24 is D = {1,2,3,4,6,8,12,24}. D = {1,2,3,24} union {4,6,8,12}, so 24 is in the sequence.
		

Crossrefs

Subsequence of A083207 (Zumkeller numbers).

Programs

  • Mathematica
    Select[Range@300,!IntegerQ@Sqrt@#&&(d=Divisors@#; MemberQ[Total/@Subsets[d,{Length@d/2}],Total@d/2])&] (* Giorgos Kalogeropoulos, Aug 15 2021 *)

Extensions

More terms from Jinyuan Wang, Aug 15 2021
Previous Showing 51-60 of 143 results. Next