cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A084159 Pell oblongs.

Original entry on oeis.org

1, 3, 21, 119, 697, 4059, 23661, 137903, 803761, 4684659, 27304197, 159140519, 927538921, 5406093003, 31509019101, 183648021599, 1070379110497, 6238626641379, 36361380737781, 211929657785303, 1235216565974041, 7199369738058939, 41961001862379597, 244566641436218639
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Essentially the same as A046727.

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 60 at p. 123.

Crossrefs

Cf. A046727 (same sequence except for first term).

Programs

  • Magma
    [Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)+2*(-1)^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
    
  • Mathematica
    b[n_]:= Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]];
    Join[{1}, Table[b[n+1], {n,50}]*Table[b[n], {n,50}]] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
    LinearRecurrence[{5,5,-1},{1,3,21},30] (* Harvey P. Dale, Aug 04 2019 *)
  • SageMath
    [(lucas_number2(2*n+1, 2, -1) + 2*(-1)^n)/4 for n in range(31)] # G. C. Greubel, Oct 11 2022

Formula

a(n) = ((sqrt(2)+1)^(2*n+1) - (sqrt(2)-1)^(2*n+1) + 2*(-1)^n)/4.
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3). - Paul Curtz, May 17 2008
G.f.: (1-x)^2/((1+x)*(1-6*x+x^2)). - R. J. Mathar, Sep 17 2008
a(n) = A078057(n)*A001333(n). - R. J. Mathar, Jul 08 2009
a(n) = A001333(n)*A001333(n+1).
From Peter Bala, May 01 2012: (Start)
a(n) = (-1)^n*R(n,-4), where R(n,x) is the n-th row polynomial of A211955.
a(n) = (-1)^n*1/u*T(n,u)*T(n+1,u) with u = sqrt(-1) and T(n,x) the Chebyshev polynomial of the first kind.
a(n) = (-1)^n + 4*Sum_{k = 1..n} (-1)^(n-k)*8^(k-1)*binomial(n+k,2*k).
Recurrence equations: a(n) = 6*a(n-1) - a(n-2) + 4*(-1)^n, with a(0) = 1 and a(1) = 3; a(n)*a(n-2) = a(n-1)*(a(n-1)+4*(-1)^n).
Sum_{k >= 0} (-1)^k/a(k) = 1/sqrt(2).
1 - 2*(Sum_{k = 0..n} (-1)^k/a(k))^2 = (-1)^(n+1)/A090390(n+1). (End)
a(n) = (A001333(2*n+1) + (-1)^n)/2. - G. C. Greubel, Oct 11 2022
E.g.f.: exp(-x)*(1 + exp(4*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)))/2. - Stefano Spezia, Aug 03 2024

A163960 Decimal expansion of 2*(sqrt(2) - 1).

Original entry on oeis.org

8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5
Offset: 0

Views

Author

N. J. A. Sloane, Oct 02 2010

Keywords

Comments

Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(1,1,sqrt(2)). (See A195284.) - Clark Kimberling, Sep 14 2011

Examples

			0.82842712474619009760337744841939615713934375075389614635335...
		

References

  • J. M. Steele, Probability Theory and Combinatorial Optimization, SIAM, 1997, p. 3.

Crossrefs

Essentially the same digit sequence as A010466, A086178, A090488 and A157258.

Programs

Formula

Equals Sum_{k>=0} (-1)^k * binomial(2*k,k)/((k+1) * 4^k). - Amiram Eldar, May 06 2022
Equals Sum_{k>=1} (-1)^(k+1)/A084158(k). - Amiram Eldar, Dec 02 2024

A096979 Sum of the areas of the first n+1 Pell triangles.

Original entry on oeis.org

0, 1, 6, 36, 210, 1225, 7140, 41616, 242556, 1413721, 8239770, 48024900, 279909630, 1631432881, 9508687656, 55420693056, 323015470680, 1882672131025, 10973017315470, 63955431761796, 372759573255306, 2172602007770041
Offset: 0

Views

Author

Paul Barry, Jul 17 2004

Keywords

Comments

Convolution of A059841(n) and A001109(n+1).
Partial sums of A084158.

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{5,5,-1},{0,1,5},30]] (* Harvey P. Dale, Sep 07 2011 *)
    LinearRecurrence[{6, 0, -6, 1},{0, 1, 6, 36},22] (* Ray Chandler, Aug 03 2015 *)

Formula

G.f.: x/((1-x)*(1+x)*(1-6*x+x^2)).
a(n) = 6*a(n-1)-6*a(n-3)+a(n-4).
a(n) = (3-2*sqrt(2))^n*(3/32-sqrt(2)/16)+(3+2*sqrt(2))^n*(sqrt(2)/16+3/32)-(-1)^n/16-1/8.
a(n) = Sum_{k=0..n} (sqrt(2)*(sqrt(2)+1)^(2*k)/8-sqrt(2)*(sqrt(2)-1)^(2*k)/8)*(1+(-1)^(n-k))/2.
a(n) = Sum_{k=0..n} A000129(k)*A000129(k+1)/2. [corrected by Jason Yuen, Jan 14 2025]
a(n) = (A001333(n+1)^2 - 1)/8 = ((A000129(n) + A000129(n+1))^2 - 1)/8. - Richard R. Forberg, Aug 25 2013
a(n) = A002620(A000129(n+1)) = A000217(A048739(n-1)), n > 0. - Ivan N. Ianakiev, Jun 21 2014

A383720 a(0)=3, a(1)=5, a(2)=35; a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3) for n > 2.

Original entry on oeis.org

3, 5, 35, 197, 1155, 6725, 39203, 228485, 1331715, 7761797, 45239075, 263672645, 1536796803, 8957108165, 52205852195, 304278004997, 1773462177795, 10336495061765, 60245508192803, 351136554095045, 2046573816377475, 11928306344169797, 69523264248641315
Offset: 0

Views

Author

Seiichi Manyama, May 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, 5, -1}, {3, 5, 35}, 25] (* Paolo Xausa, Jul 03 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec((3-10*x-5*x^2)/((1+x)*(1-6*x+x^2)))

Formula

G.f.: (3 - 10*x - 5*x^2)/((1 + x) * (1 - 6*x + x^2)).
a(n) = Pell(3*n)/Pell(n) for n > 0.

A213688 a(n) = Sum_{i=0..n} A000129(i)^3.

Original entry on oeis.org

0, 1, 9, 134, 1862, 26251, 369251, 5196060, 73113372, 1028784997, 14476099149, 203694183170, 2866194639170, 40330419190351, 567492063162119, 7985219303802744, 112360562315573112, 1581033091723823881, 22246823846444284881, 313036566941955454910
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2012

Keywords

Crossrefs

Cf. A000129, A048739 (partial sums of A000129), A084158 (sum of squares of A000129).
Cf. A110272 (cubes of the Pell numbers).

Programs

Formula

G.f.: x*(1-4*x-x^2)/((1-x)*(1+2*x-x^2)*(1-14*x-x^2)). [Bruno Berselli, Jun 18 2012]
a(n) = ((3+sqrt(2))*(1+sqrt(2))^(3n+1)+(3-sqrt(2))*(1-sqrt(2))^(3n+1)-21*(-1)^n*((1+sqrt(2))^n+(1-sqrt(2))^n)+32)/224. [Bruno Berselli, Jun 18 2012]

A218990 Power ceiling-floor sequence of 3+sqrt(8).

Original entry on oeis.org

6, 34, 199, 1159, 6756, 39376, 229501, 1337629, 7796274, 45440014, 264843811, 1543622851, 8996893296, 52437736924, 305629528249, 1781339432569, 10382407067166, 60513102970426, 352696210755391, 2055664161561919, 11981288758616124, 69832068390134824
Offset: 0

Views

Author

Clark Kimberling, Nov 11 2012

Keywords

Comments

See A214992 for a discussion of power ceiling-floor sequence and power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 3+sqrt(8), and the limit p3(r) = 5.854315472394508538153482993682502287049948...

Examples

			a(0) = ceiling(r) = 6, where r = 3+sqrt(8);
a(1) = floor(6*r) = 34; a(2) = ceiling(35*r) = 199.
		

References

  • R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.~

Crossrefs

Programs

  • Mathematica
    x = 3 + Sqrt[8]; z = 30; (* z = # terms in sequences *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    t1 = Table[p1[n], {n, 0, z}]  (* A001653 *)
    t2 = Table[p2[n], {n, 0, z}]  (* A084158 *)
    t3 = Table[p3[n], {n, 0, z}]  (* A218990 *)
    t4 = Table[p4[n], {n, 0, z}]  (* A001109 *)
    LinearRecurrence[{5,5,-1},{6,34,199},30] (* Harvey P. Dale, Mar 21 2024 *)
  • PARI
    Vec((6 + 4*x - x^2) / ((1 + x)*(1 - 6*x + x^2)) + O(x^50)) \\ Colin Barker, Nov 13 2017

Formula

a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x=3+sqrt(8) and a(0) = ceiling(x).
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3).
G.f.: (6 + 4*x - x^2)/(1 - 5*x - 5*x^2 + x^3).
a(n) = (1/16)*(2*(-1)^n + (47-33*sqrt(2))*(3-2*sqrt(2))^n + (3+2*sqrt(2))^n*(47+33*sqrt(2))). - Colin Barker, Nov 13 2017

A105058 Expansion of g.f. (1+8*x-x^2)/((1+x)*(1-6*x+x^2)).

Original entry on oeis.org

1, 13, 69, 409, 2377, 13861, 80781, 470833, 2744209, 15994429, 93222357, 543339721, 3166815961, 18457556053, 107578520349, 627013566049, 3654502875937, 21300003689581, 124145519261541, 723573111879673
Offset: 0

Views

Author

Creighton Dement, Apr 04 2005

Keywords

Comments

A floretion-generated sequence relating the squares of the numerators of continued fraction convergents to sqrt(2) to the squares of the denominators of continued fraction convergents to sqrt(2) (Pell numbers).
Floretion Algebra Multiplication Program, FAMP Code:
1dia[J]tesseq[ - .5'j + .5'k - .5j' + .5k' - 2'ii' + 'jj' - 'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj' + e ]. Identity used: dia[I]tes + dia[J]tes + dia[K]tes = jes + fam + 3tes.

Crossrefs

Programs

  • Magma
    [Evaluate(DicksonSecond(2*n+1, -1), 2) -(-1)^n: n in [0..30]]; // G. C. Greubel, Aug 21 2022
    
  • Mathematica
    CoefficientList[ Series[(1+8x-x^2)/((1+x)(1-6x+x^2)), {x,0,30}], x] (* Robert G. Wilson v, Apr 06 2005 *)
    LinearRecurrence[{5,5,-1}, {1,13,69}, 30] (* Harvey P. Dale, Jun 03 2017 *)
  • SageMath
    [lucas_number1(2*n+2,2,-1) -(-1)^n for n in (0..30)] # G. C. Greubel, Aug 21 2022

Formula

a(n) = 2 * A001109(n+1) - (-1)^n.
G.f.: G(0)/(1-3*x) - 1/(1+x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
From G. C. Greubel, Aug 21 2022: (Start)
a(n) = A000129(2*n+2) - (-1)^n.
E.g.f.: exp(3*x)*( 2*cosh(2*sqrt(2)*x) + (3/sqrt(2))*sinh(2*sqrt(2)*x)) - exp(-x). (End)
Previous Showing 11-17 of 17 results.