cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A182432 Recurrence a(n)*a(n-2) = a(n-1)*(a(n-1) + 3) with a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 28, 217, 1705, 13420, 105652, 831793, 6548689, 51557716, 405913036, 3195746569, 25160059513, 198084729532, 1559517776740, 12278057484385, 96664942098337, 761041479302308, 5991666892320124, 47172293659258681, 371386682381749321
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

The non-linear recurrence equation a(n)*a(n-2) = a(n-1)*(a(n-1) + r) with initial conditions a(0) = 1, a(1) = 1 + r has the solution a(n) = 1/2 + (1/2)*Sum_{k = 0..n} (2*r)^k*binomial(n+k,2*k) = 1/2 + b(n,2*r)/2, where b(n,x) are the Morgan-Voyce polynomials of A085478. The recurrence produces sequences A101265 (r = 1), A011900 (r = 2) and A054318 (r = 4), as well as signed versions of A133872 (r = -1), A109613 (r = -2), A146983 (r = -3) and A084159(r = -4).
Also the indices of centered pentagonal numbers (A005891) which are also centered triangular numbers (A005448). - Colin Barker, Jan 01 2015
Also positive integers y in the solutions to 3*x^2 - 5*y^2 - 3*x + 5*y = 0. - Colin Barker, Jan 01 2015

Crossrefs

Programs

  • Magma
    I:=[1, 4, 28]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..25]]; // Vincenzo Librandi, May 18 2012
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==4,a[n]==(a[-1+n] (3+a[-1+n]))/a [-2+n]}, a[n],{n,30}] (* or *) LinearRecurrence[{9,-9,1},{1,4,28},30] (* Harvey P. Dale, May 14 2012 *)
  • PARI
    Vec((1-5*x+x^2)/((1-x)*(1-8*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 01 2015

Formula

a(n) = 1/2 + (1/2)*Sum_{k = 0..n} 6^k*binomial(n+k,2*k).
a(n) = R(n,3) where R(n,x) denotes the row polynomials of A211955.
a(n) = (1/u)*T(n,u)*T(n+1,u) with u = sqrt(5/2) and T(n,x) the n-th Chebyshev polynomial of the first kind.
Recurrence equation: a(n) = 8*a(n-1) - a(n-2) - 3 with a(0) = 1 and a(1) = 4.
O.g.f.: (1 - 5*x + x^2)/((1 - x)*(1 - 8*x + x^2)) = 1 + 4*x + 28*x^2 + ....
Sum_{n >= 0} 1/a(n) = sqrt(5/3); 5 - 3*(Sum_{k = 0..2*n} 1/a(k))^2 = 2/A070997(n)^2.
a(0) = 1, a(1) = 4, a(2) = 28, a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3). - Harvey P. Dale, May 14 2012

A110048 Expansion of 1/((1+2*x)*(1-4*x-4*x^2)).

Original entry on oeis.org

1, 2, 16, 64, 336, 1568, 7680, 36864, 178432, 860672, 4157440, 20070400, 96915456, 467935232, 2259419136, 10909384704, 52675280896, 254338531328, 1228055511040, 5929575645184, 28630525673472, 138240403177472
Offset: 0

Views

Author

Creighton Dement, Jul 10 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code:
-kbasejseq[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'
See also comment for A110047.

Crossrefs

Programs

  • Magma
    [2^(n-2)*(Evaluate(DicksonFirst(n+1,-1), 2) +2*(-1)^n): n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Maple
    seriestolist(series(1/((1+2*x)*(1-4*x-4*x^2)), x=0,40));
  • Mathematica
    CoefficientList[Series[1/((1+2x)(1-4x-4x^2)), {x,0,40}], x] (* or *) LinearRecurrence[{2,12,8}, {1,2,16}, 41] (* Harvey P. Dale, Nov 02 2011 *)
  • SageMath
    [2^(n-2)*(lucas_number2(n+1,2,-1) +2*(-1)^n) for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

Superseeker finds: a(n+1) = 2*A086348(n+1) (A086348's offset is 1: On a 3 X 3 board, number of n-move routes of chess king ending at central cell); binomial transform matches A084159 (Pell oblongs); j-th coefficient of g.f.*(1+x)^j matches A079291 (Squares of Pell numbers); a(n) + a(n+1) = A086346(n+2) (A086346's offset is 1: On a 3 X 3 board, the number of n-move paths for a chess king ending in a given corner cell.)
From Maksym Voznyy (voznyy(AT)mail.ru), Jul 24 2008: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3), where a(1)=1, a(2)=2, a(3)=16.
a(n) = 2^(n-3)*( 4*(-1)^(1-n) + (sqrt(2)-1)^(-n) + (-sqrt(2)-1)^(-n)) . (End)
a(n) = 2^n*A097076(n+1). - R. J. Mathar, Mar 08 2021

A046727 Related to Pythagorean triples: alternate terms of A001652 and A046090.

Original entry on oeis.org

0, 3, 21, 119, 697, 4059, 23661, 137903, 803761, 4684659, 27304197, 159140519, 927538921, 5406093003, 31509019101, 183648021599, 1070379110497, 6238626641379, 36361380737781, 211929657785303, 1235216565974041, 7199369738058939, 41961001862379597, 244566641436218639
Offset: 0

Views

Author

Keywords

Comments

For a triple (a,b,c) there exist k,m such that (a,b,c) = (k^2 - m^2, 2*k*m, k^2 + m^2). Here k = A001333(n) and m = A001333(n+1), so this sequence is identical to the Pell oblongs A084159 for n > 0. - Lambert Klasen (Lambert.Klasen(AT)gmx.de), Nov 10 2004
a(n), for n >= 1, gives the odd length (in some unit) catheti (legs) of the (primitive) Pythagorean triples which have absolute length difference of the catheti equal to one. See a W. Lang comment on A001653 on how to generate all such Pythagorean triples. - Wolfdieter Lang, Mar 08 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.

Crossrefs

Essentially the same as A084159.

Programs

  • Haskell
    a046727 n = a046727_list !! n
    a046727_list = 0 : f (tail a001652_list) (tail a046090_list) where
       f (x::xs) (:y:ys) = x : y : f xs ys
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    I:=[0,3,21,119]; [n le 4 select I[n] else 5*Self(n-1)+5*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 04 2016
    
  • Mathematica
    RecurrenceTable[{a[n+2]==6a[n+1] -a[n] -4*(-1)^n, a[0]==3, a[1]==21}, a, {n, 30}] (* Ron Knott, Jul 01 2013 *)
    LinearRecurrence[{5,5,-1}, {0,3,21,119}, 30] (* Vincenzo Librandi, Nov 04 2016 *)
  • PARI
    concat(0, Vec(x*(3+6*x-x^2)/((1+x)*(1-6*x+x^2)) + O(x^30))) \\ Colin Barker, Nov 03 2016
    
  • SageMath
    [(lucas_number2(2*n+1,2,-1) +2*(-1)^n)/4 -int(n==0) for n in range(41)] # G. C. Greubel, Feb 11 2023

Formula

Values of x obtained by repeatedly multiplying the triple (x, y, z) = (3, 4, 5) by the matrix A = ([1 2 2], [2 1 2], [2 2 3]), the Across matrix of "The Trinary Tree(s) underlying Primitive Pythagorean Triples" generating matrices. - Vim Wenders, Jan 14 2004
For n > 0, a(n) = A001333(n)*A001333(n+1). - Lambert Klasen (Lambert.Klasen(AT)gmx.de), Nov 10 2004
G.f.: x*(3+6*x-x^2)/((1+x)*(1-6*x+x^2)). - R. J. Mathar, Jul 08 2009
a(n) + a(n+1) = A005319(n+1), n > 0. - R. J. Mathar, Jul 13 2009
a(n) = 6*a(n-1) - a(n-2) - 4*(-1)^n. - Ron Knott, Jul 01 2013
From Colin Barker, Nov 03 2016: (Start)
a(n) = (2*(-1)^n + (1+sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1))/4 for n > 0.
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3) for n > 3. (End)
From G. C. Greubel, Feb 11 2023: (Start)
a(n) = (1/2)*(A001109(n+1) + A001109(n) + (-1)^n) - [n=0].
a(n) = (A001333(2*n+1) + (-1)^n)/2 - [n=0]. (End)
E.g.f.: exp(-x)*(1 + exp(4*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)))/2 - 1. - Stefano Spezia, Aug 03 2024

Extensions

More terms from Sascha Kurz, Jan 23 2003
Previous Showing 11-13 of 13 results.