A340970
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * binomial(2*j,j).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 33, 45, 1, 1, 9, 67, 245, 195, 1, 1, 11, 113, 721, 1921, 873, 1, 1, 13, 171, 1593, 8179, 15525, 3989, 1, 1, 15, 241, 2981, 23649, 95557, 127905, 18483, 1, 1, 17, 323, 5005, 54691, 361449, 1137709, 1067925, 86515, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 11, 33, 67, 113, 171, ...
1, 45, 245, 721, 1593, 2981, ...
1, 195, 1921, 8179, 23649, 54691, ...
1, 873, 15525, 95557, 361449, 1032801, ...
-
T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * Binomial[2*j, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
-
T(n, k) = sum(j=0, n, k^j*binomial(n, j)*binomial(2*j, j));
-
T(n, k) = polcoef((1+(2*k+1)*x+(k*x)^2)^n, n);
A098659
Expansion of 1/sqrt((1-7*x)^2-24*x^2).
Original entry on oeis.org
1, 7, 61, 595, 6145, 65527, 712909, 7863667, 87615745, 983726695, 11112210781, 126142119187, 1437751935361, 16443380994775, 188609259215725, 2168833084841395, 24994269200292865, 288596644195946695, 3337978523215692925, 38666734085509918675
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Rob Noble, Asymptotics of a family of binomial sums, J. Number Theory 130 (2010), no. 11, 2561-2585.
-
Table[Sum[Binomial[n, k]^2*6^k, {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Sep 15 2012 *)
CoefficientList[Series[1/Sqrt[(1-7*x)^2-24*x^2], {x, 0, 25}], x] (* Stefano Spezia, Dec 04 2018 *)
a[n_] := 5^n*HypergeometricPFQ[{-n,n+1},{1},-1/5]; Table[a[n],{n,0,19}] (* Detlef Meya, May 24 2024 *)
-
x='x+O('x^66); Vec(1/sqrt(1-14*x+25*x^2)) \\ Joerg Arndt, May 12 2013
A307695
Expansion of 1/(sqrt(1-4*x)*sqrt(1-16*x)).
Original entry on oeis.org
1, 10, 118, 1540, 21286, 304300, 4443580, 65830600, 985483270, 14869654300, 225759595348, 3444812388280, 52781007848284, 811510465220920, 12513859077134008, 193460383702061200, 2997463389599395270, 46532910920993515900, 723626591914643806180, 11270311875128088314200
Offset: 0
Cf.
A000984 (c=0,d=4,e=1),
A026375 (c=1,d=5,e=1),
A081671 (c=2,d=6,e=1),
A098409 (c=3,d=7,e=1),
A098410 (c=4,d=8,e=1),
A104454 (c=5,d=9,e=1).
Cf.
A084605 (c=-3,d=5,e=2),
A098453 (c=-2,d=6,e=2),
A322242 (c=-1,d=7,e=2),
A084771 (c=1,d=9,e=2),
A248168 (c=3,d=11,e=2).
Cf.
A322246 (c=-1,d=11,e=3), this sequence (c=4,d=16,e=3).
-
a[n_] := Sum[4^(n-k) * 3^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 20, 0] // Flatten (* Amiram Eldar, May 13 2021 *)
-
N=66; x='x+O('x^N); Vec(1/sqrt(1-20*x+64*x^2))
-
{a(n) = sum(k=0, n, 4^(n-k)*3^k*binomial(n, k)*binomial(2*k, k))}
-
{a(n) = sum(k=0, n, 16^(n-k)*(-3)^k*binomial(n, k)*binomial(2*k, k))}
A335309
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * n^(n-k).
Original entry on oeis.org
1, 3, 22, 245, 3606, 65527, 1411404, 35066313, 985483270, 30869546411, 1065442493556, 40144438269949, 1638733865336764, 72012798200637855, 3388250516614331416, 169894851136173584145, 9041936334960057699654, 508945841697238471315027, 30202327515992972576218980
Offset: 0
-
Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] n^(n - k), {k, 0, n}], {n, 1, 18}]]
Table[SeriesCoefficient[1/Sqrt[1 - 2 (n + 2) x + n^2 x^2], {x, 0, n}], {n, 0, 18}]
Table[n! SeriesCoefficient[Exp[(n + 2) x] BesselI[0, 2 Sqrt[n + 1] x], {x, 0, n}], {n, 0, 18}]
Table[Hypergeometric2F1[-n, -n, 1, 1 + n], {n, 0, 18}]
-
a(n) = sum(k=0, n, binomial(n,k)^2*(n+1)^k); \\ Michel Marcus, Jun 01 2020
A383946
Expansion of 1/sqrt((1-9*x)^3 * (1-x)).
Original entry on oeis.org
1, 14, 159, 1676, 17005, 168570, 1645035, 15873240, 151863705, 1443272870, 13643264503, 128404376292, 1204055841157, 11255397745298, 104933302809795, 976016662472880, 9059771065058865, 83945271527170110, 776569280469986895, 7173673630527966780, 66182347507155379101, 609866573826736447914
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1/Sqrt((1- 9*x)^3 * (1-x)); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 27 2025
-
CoefficientList[Series[1/Sqrt[(1-9*x)^3*(1-x)],{x,0,33}],x] (* Vincenzo Librandi, Aug 27 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-9*x)^3*(1-x)))
A387313
Expansion of 1/((1-x) * (1-9*x))^(5/2).
Original entry on oeis.org
1, 25, 415, 5775, 72870, 864150, 9818130, 108109650, 1162302735, 12262882775, 127424209913, 1307536637225, 13276264807260, 133597932407100, 1334029357684980, 13231465264538100, 130461712570627245, 1279632533997010725, 12492837802976030115, 121456026730456739475
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-9*x))^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
-
CoefficientList[Series[1/((1-x)*(1-9*x))^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(1/((1-x)*(1-9*x))^(5/2))
A084774
Coefficients of 1/sqrt(1-14*x+9*x^2); also, a(n) is the central coefficient of (1+7x+10x^2)^n.
Original entry on oeis.org
1, 7, 69, 763, 8881, 106407, 1298949, 16065483, 200630241, 2524253767, 31947470149, 406281388443, 5187375332881, 66454791792487, 853788052488069, 10996378059281643, 141934540736139201, 1835494145265388167, 23776671158743933509, 308463567293772941883
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Vaclav Kotesovec, Asymptotic of a sums of powers of binomial coefficients * x^k, 2012.
-
List([0..20],n->Sum([0..n],k->Binomial(n,k)^2*2^k*5^(n-k))); # Muniru A Asiru, Jul 29 2018
-
[3^n*Evaluate(LegendrePolynomial(n), 7/3) : n in [0..40]]; // G. C. Greubel, May 31 2023
-
Table[Sum[Binomial[n,k]^2*2^k*5^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
Table[n! SeriesCoefficient[E^(7 x) BesselI[0, 2 Sqrt[10] x], {x,0,n}], {n,0,20}] (* Vincenzo Librandi, May 10 2013 *)
Table[3^n*LegendreP[n, 7/3], {n,0,40}] (* G. C. Greubel, May 31 2023 *)
a[n_] := 3^n*HypergeometricPFQ[{-n, n + 1}, {1}, -2/3]; Flatten[Table[a[n], {n,0,19}]] (* Detlef Meya, May 22 2024 *)
-
for(n=0,30,t=polcoeff((1+7*x+10*x^2)^n,n,x); print1(t","))
-
{a(n)=sum(k=0, n, binomial(n, k)^2*2^k*5^(n-k))} \\ Paul D. Hanna, Sep 28 2012
-
[3^n*gen_legendre_P(n, 0, 7/3) for n in range(41)] # G. C. Greubel, May 31 2023
A341867
Square array read by downward antidiagonals: T(m,n) = Sum_{i=0..m, j=0..n} binomial(m,i)*binomial(n,j)*binomial(i+j,i).
Original entry on oeis.org
1, 2, 2, 4, 5, 4, 8, 12, 12, 8, 16, 28, 33, 28, 16, 32, 64, 86, 86, 64, 32, 64, 144, 216, 245, 216, 144, 64, 128, 320, 528, 664, 664, 528, 320, 128, 256, 704, 1264, 1736, 1921, 1736, 1264, 704, 256, 512, 1536, 2976, 4416, 5322, 5322, 4416, 2976, 1536, 512
Offset: 0
Rows 0-7:
1, 2, 4, 8, 16, 32, 64, 128, ...
2, 5, 12, 28, 64, 144, 320, 704, ...
4, 12, 33, 86, 216, 528, 1264, 2976, ...
8, 28, 86, 245, 664, 1736, 4416, 10992, ...
16, 64, 216, 664, 1921, 5322, 14268, 37272, ...
32, 144, 528, 1736, 5322, 15525, 43620, 118980, ...
64, 320, 1264, 4416, 14268, 43620, 127905, 362910, ...
128, 704, 2976, 10992, 37272, 118980, 362910, 1067925, ...
...
-
T[m_, n_] := Sum[Binomial[m, i] * Binomial[n, j] * Binomial[i + j, i], {i, 0, m}, {j, 0, n} ]; Table[T[m, n - m], {n, 0, 9}, {m, 0, n}] // Flatten (* Amiram Eldar, Nov 08 2021 *)
T[m_, n_] := Sum[Binomial[n, j] Hypergeometric2F1[j + 1, -m, 1, -1], {j, 0, n}];
(* Peter Luschny, Nov 08 2021 *)
-
T(m,n) = sum(i=0, m, sum(j=0, n, binomial(m,i)*binomial(n,j)*binomial(i+j,i)))
A383600
Expansion of 1/( (1-x)^3 * (1-9*x) )^(1/4).
Original entry on oeis.org
1, 3, 15, 97, 699, 5313, 41689, 334215, 2721411, 22423737, 186497325, 1562826195, 13178010405, 111700773135, 951026829255, 8128169277897, 69701329848051, 599462375836185, 5169038197383789, 44674793959777443, 386916485124220929, 3357265884164614707
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x)^3 * (1-9*x) )^(1/4))); // Vincenzo Librandi, May 05 2025
-
Table[Sum[(-8)^(k)* Binomial[-1/4,k]* Binomial[n,k],{k,0,n}],{n,0,22}] (* Vincenzo Librandi, May 05 2025 *)
-
a(n) = sum(k=0, n, (-8)^k*binomial(-1/4, k)*binomial(n, k));
A383602
Expansion of 1/( (1-x) * (1-9*x)^3 )^(1/4).
Original entry on oeis.org
1, 7, 55, 453, 3819, 32637, 281409, 2441715, 21285411, 186225253, 1633973125, 14370441055, 126631522005, 1117707358515, 9879287145855, 87428272217853, 774533435844531, 6868083093333285, 60952616213098789, 541342619512077967, 4811079933571973329
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x) * (1-9*x)^3 )^(1/4))); // Vincenzo Librandi, May 05 2025
-
Table[Sum[(-8)^k* Binomial[-3/4,k]* Binomial[n,k],{k,0,n}],{n,0,22}] (* Vincenzo Librandi, May 05 2025 *)
-
a(n) = sum(k=0, n, (-8)^k*binomial(-3/4, k)*binomial(n, k));
Comments