cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A090308 a(n) = 19*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 19.

Original entry on oeis.org

2, 19, 363, 6916, 131767, 2510489, 47831058, 911300591, 17362542287, 330799604044, 6302555019123, 120079344967381, 2287810109399362, 43588471423555259, 830468767156949283, 15822495047405591636
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.052486... = 2/(19+sqrt(365)) = (sqrt(365)-19)/2.
Lim_{n-> infinity} a(n+1)/a(n) = 19.052486... = (19+sqrt(365))/2 = 2/(sqrt(365)-19).

Examples

			a(4) = 19*a(3) + a(2) = 19*6916 + 363 = ((19+sqrt(365))/2)^4 + ((19-sqrt(365))/2)^4 = 131766.9999924108 + 0.0000075891 = 131767.
		

Crossrefs

Cf. A049270.
Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), this sequence (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    m:=19;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    m:=19; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 19*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LucasL[Range[20]-1,20] (* G. C. Greubel, Dec 30 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 19*I/2) ) \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 19*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 19*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 19.
a(n) = ((19+sqrt(365))/2)^n + ((19-sqrt(365))/2)^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5....
(a(n))^2 = a(2n) + 2 if n=2, 4, 6....
G.f.: (2-19*x)/(1-19*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 19) = 2*(-i)^n * ChebyshevT(n, 19*i/2). - G. C. Greubel, Dec 30 2019

Extensions

More terms from Ray Chandler, Feb 14 2004

A090313 a(n) = 22*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 22.

Original entry on oeis.org

2, 22, 486, 10714, 236194, 5206982, 114789798, 2530582538, 55787605634, 1229857906486, 27112661548326, 597708411969658, 13176697724880802, 290485058359347302, 6403847981630521446, 141175140654230819114
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.045361... = 1/(11+sqrt(122)) = (sqrt(122)-11).
Lim_{n-> infinity} a(n+1)/a(n) = 22.045361... = (11+sqrt(122)) = 1/(sqrt(122)-11).

Examples

			a(4) = 236194 = 22*a(3) + a(2) = 22*10714 + 486 = (11 + sqrt(122))^4 + (11 - sqrt(122))^4 = 236193.999995766 + 0.000004233 = 236194.
		

Crossrefs

Cf. A079219.
Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), this sequence (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    m:=22;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    m:=22; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 11*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LucasL[Range[20]-1,22] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 11*I) ) \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 11*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 22*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 22.
a(n) = (11+sqrt(122))^n + (11-sqrt(122))^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5...,
(a(n))^2 = a(2n) + 2 if n=2, 4, 6....
G.f.: (2-22*x)/(1-22*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 22) = 2*(-i)^n * ChebyshevT(n, 11*i). - G. C. Greubel, Dec 30 2019

Extensions

More terms from Ray Chandler, Feb 14 2004

A090314 a(n) = 23*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23.

Original entry on oeis.org

2, 23, 531, 12236, 281959, 6497293, 149719698, 3450050347, 79500877679, 1831970236964, 42214816327851, 972772745777537, 22415987969211202, 516540496037635183, 11902847396834820411, 274282030623238504636, 6320389551731320427039, 145643241720443608326533, 3356114949121934311937298
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n -> infinity} a(n)/a(n+1) = 0.04339638... = 2/(23+sqrt(533)) = (sqrt(533)-23)/2.
Lim_{n -> infinity} a(n+1)/a(n) = 23.04339638... = (23+sqrt(533))/2 = 2/(sqrt(533) - 23).

Examples

			a(4) = 281959 = 23*a(3) + a(2) = 23*12236 + 531 = ((23 + sqrt(533))/2)^4 + ((23 - sqrt(533))/2)^4 = 281958.999996453 + 0.000003546 = 281959.
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), this sequence (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    a:=[2,23];; for n in [3..20] do a[n]:=23*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
  • Magma
    I:=[2,23]; [n le 2 select I[n] else 23*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 23*I/2)), n = 0..20); # G. C. Greubel, Dec 29 2019
  • Mathematica
    LinearRecurrence[{23,1},{2,23},20] (* Harvey P. Dale, Jul 11 2014 *)
    LucasL[Range[20]-1,23] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 23*I/2) ) \\ G. C. Greubel, Dec 29 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 23*I/2) for n in (0..20)] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = 23*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23.
a(n) = ((23 + sqrt(533))/2)^n + ((23 - sqrt(533))/2)^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5....
(a(n))^2 = a(2n) + 2 if n=2, 4, 6....
G.f.: (2-23*x)/(1-23*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 23) = 2*(-i)^n * ChebyshevT(n, 23*i/2). - G. C. Greubel, Dec 29 2019

Extensions

More terms from Ray Chandler, Feb 14 2004
Terms a(16) onward added by G. C. Greubel, Dec 29 2019

A090316 a(n) = 24*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 24.

Original entry on oeis.org

2, 24, 578, 13896, 334082, 8031864, 193098818, 4642403496, 111610782722, 2683301188824, 64510839314498, 1550943444736776, 37287153512997122, 896442627756667704, 21551910219673022018, 518142287899909196136, 12456966819817493729282, 299485345963519758698904
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n->infinity} a(n)/a(n+1) = 0.0415945... = 1/(12+sqrt(145)) = sqrt(145) - 12.
Lim_{n->infinity} a(n+1)/a(n) = 24.0415945... = 12+sqrt(145) = 1/(sqrt(145)-12).

Examples

			a(4) =334082 = 24a(3) + a(2) = 24*13896+ 578 = (12+sqrt(145))^4 + (12-sqrt(145))^4 = 334081.99999700672 + 0.00000299327 = 334082.
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), this sequence (m=24), A330767 (m=25).

Programs

  • GAP
    a:=[2,24];; for n in [3..20] do a[n]:=24*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
  • Magma
    I:=[2,24]; [n le 2 select I[n] else 24*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 12*I)), n = 0..20); # G. C. Greubel, Dec 29 2019
  • Mathematica
    LinearRecurrence[{24,1},{2,24},20] (* Harvey P. Dale, Aug 30 2015 *)
    LucasL[Range[20]-1,24] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 12*I) ) \\ G. C. Greubel, Dec 29 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 12*I) for n in (0..20)] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = 24*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 24.
a(n) = (12+sqrt(145))^n + (12-sqrt(145))^n.
(a(n))^2 = a(2n) - 2 if n=1,3,5,..., (a(n))^2 = a(2n)+2 if n=2,4,6,....
G.f.: 2*(1-12*x)/(1-24*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = 2*(-i)^n * ChebyshevT(n, 12*i) = Lucas(n, 24). - G. C. Greubel, Dec 29 2019
a(n) = 2 * A041264(n-1) for n>0. - Alois P. Heinz, Dec 29 2019

Extensions

More terms from Ray Chandler, Feb 14 2004
Corrected by T. D. Noe, Nov 07 2006

A330767 a(n) = 25*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 25.

Original entry on oeis.org

2, 25, 627, 15700, 393127, 9843875, 246490002, 6172093925, 154548838127, 3869893047100, 96901875015627, 2426416768437775, 60757321085960002, 1521359443917437825, 38094743419021905627, 953889944919465078500, 23885343366405648868127, 598087474105060686781675, 14976072195992922818410002
Offset: 0

Views

Author

G. C. Greubel, Dec 29 2019

Keywords

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), this sequence (m=25).

Programs

  • GAP
    a:=[2,25];; for n in [3..25] do a[n]:=25*a[n-1]+a[n-2]; od; a;
  • Magma
    I:=[2,25]; [n le 2 select I[n] else 25*Self(n-1) +Self(n-2): n in [1..25]];
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 25*I/2)), n = 0..25);
  • Mathematica
    LucasL[Range[25] -1, 25]
  • PARI
    vector(26, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 25*I/2) )
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 25*I/2) for n in (0..25)]
    

Formula

a(n) = ( (25 + sqrt(629))^n + (25 - sqrt(629))^n )/2^n.
G.f.: (2 - 25*x)/(1-25*x-x^2).
a(n) = Lucas(n, 25) = 2*(-i)^n * ChebyshevT(n, 25*i/2).

A089772 a(n) = Lucas(11*n).

Original entry on oeis.org

2, 199, 39603, 7881196, 1568397607, 312119004989, 62113250390418, 12360848946698171, 2459871053643326447, 489526700523968661124, 97418273275323406890123, 19386725908489881939795601, 3858055874062761829426214722
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 09 2004

Keywords

Comments

Lim_{n-> infinity} a(n+1)/a(n) = 199.00502499874... = (199 + sqrt(39605))/2.
Lim_{n->infinity} a(n)/a(n+1) = 0.00502499874... = 2/(199 + sqrt(39605)) = (sqrt(39605) - 199)/2.

Examples

			a(4) = 1568397607 = 199*a(3) + a(2) = 199*7881196 + 39603 = ((199 + sqrt(39605) )/2)^4 + ((199 - sqrt(39605))/2)^4 = 1568397606.9999999993624065... + 0.0000000006375934...
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25), A087281 (m=29), A087287 (m=76), this sequence (m=199).

Programs

  • GAP
    List([0..20], n-> Lucas(1,-1,11*n)[2] ); # G. C. Greubel, Dec 30 2019
  • Magma
    [Lucas(11*n): n in [0..20]]; // Vincenzo Librandi, Apr 15 2011
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 199*I/2)), n = 0..20); # G. C. Greubel, Dec 31 2019
  • Mathematica
    LucasL[11*Range[0,20]] (* or *) LinearRecurrence[{199,1},{2,199},20] (* Harvey P. Dale, Dec 23 2015 *)
    LucasL[Range[20]-1,199] (* G. C. Greubel, Dec 31 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 199*I/2) ) \\ G. C. Greubel, Dec 31 2019
    
  • Sage
    [lucas_number2(11*n,1,-1) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 199*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 199.
a(n) = ((199 + sqrt(39605))/2)^n + ((199 - sqrt(39605))/2)^n.
a(n)^2 = a(2n) - 2 if n = 1, 3, 5, ...;
a(n)^2 = a(2n) + 2 if n = 2, 4, 6, ....
G.f.: (2 - 199*x)/(1 - 199*x - x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 199) = 2*(-i)^n * ChebyshevT(n, 199*i/2). - G. C. Greubel, Dec 31 2019
E.g.f.: 2*exp(199*x/2)*cosh(sqrt(39605)*x/2). - Stefano Spezia, Jan 01 2020

A195616 Denominators of Pythagorean approximations to 3.

Original entry on oeis.org

12, 444, 16872, 640680, 24328980, 923860548, 35082371856, 1332206269968, 50588755886940, 1921040517433740, 72948950906595192, 2770139093933183544, 105192336618554379492, 3994538652411133237140, 151687276455004508631840
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Magma
    I:=[12, 444, 16872]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
    
  • Mathematica
    r = 3; z = 20;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195616, A195617 *)
    Sqrt[a^2 + b^2] (* A097315 *)
    (* Peter J. C. Moses, Sep 02 2011 *)
    Table[(1/20)*(LucasL[2*n+1,6] -6*(-1)^n), {n,40}] (* G. C. Greubel, Feb 13 2023 *)
  • PARI
    Vec(12*x/((1+x)*(1-38*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 04 2015
    
  • SageMath
    A085447=BinaryRecurrenceSequence(6,1,2,6)
    [(A085447(2*n+1) - 6*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023

Formula

From Colin Barker, Jun 04 2015: (Start)
a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3).
G.f.: 12*x / ((1+x)*(1-38*x+x^2)). (End)
From G. C. Greubel, Feb 13 2023: (Start)
a(n) = (3/10)*(A097314(n) + (-1)^n).
a(n) = (1/20)*(A085447(2*n+1) - 6*(-1)^n). (End)

A195617 Numerators b(n) of Pythagorean approximations b(n)/a(n) to 3.

Original entry on oeis.org

35, 1333, 50615, 1922041, 72986939, 2771581645, 105247115567, 3996618809905, 151766267660819, 5763121552301221, 218846852719785575, 8310417281799550633, 315577009855663138475, 11983615957233399711421, 455061829365013525895519
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195616 for Mathematica program.

Crossrefs

Programs

  • Magma
    I:=[35, 1333, 50615]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
    
  • Mathematica
    Table[(3*LucasL[2*n+1,6] +2*(-1)^n)/20, {n, 40}] (* G. C. Greubel, Feb 13 2023 *)
  • PARI
    Vec(-x*(x^2-38*x-35)/((x+1)*(x^2-38*x+1)) + O(x^50)) \\ Colin Barker, Jun 04 2015
    
  • SageMath
    A085447=BinaryRecurrenceSequence(6,1,2,6)
    [(3*A085447(2*n+1) + 2*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023

Formula

From Colin Barker, Jun 04 2015: (Start)
a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3).
G.f.: x*(35+38*x-x^2) / ((1+x)*(1-38*x+x^2)). (End)
a(n) = (1/20)*(3*A085447(2*n+1) + 2*(-1)^n). - G. C. Greubel, Feb 13 2023

A352362 Array read by ascending antidiagonals. T(n, k) = L(k, n) where L are the Lucas polynomials.

Original entry on oeis.org

2, 2, 0, 2, 1, 2, 2, 2, 3, 0, 2, 3, 6, 4, 2, 2, 4, 11, 14, 7, 0, 2, 5, 18, 36, 34, 11, 2, 2, 6, 27, 76, 119, 82, 18, 0, 2, 7, 38, 140, 322, 393, 198, 29, 2, 2, 8, 51, 234, 727, 1364, 1298, 478, 47, 0, 2, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 76, 2
Offset: 0

Views

Author

Peter Luschny, Mar 18 2022

Keywords

Examples

			Array starts:
n\k 0, 1,  2,   3,    4,     5,      6,       7,        8, ...
--------------------------------------------------------------
[0] 2, 0,  2,   0,    2,     0,      2,       0,        2, ... A010673
[1] 2, 1,  3,   4,    7,    11,     18,      29,       47, ... A000032
[2] 2, 2,  6,  14,   34,    82,    198,     478,     1154, ... A002203
[3] 2, 3, 11,  36,  119,   393,   1298,    4287,    14159, ... A006497
[4] 2, 4, 18,  76,  322,  1364,   5778,   24476,   103682, ... A014448
[5] 2, 5, 27, 140,  727,  3775,  19602,  101785,   528527, ... A087130
[6] 2, 6, 38, 234, 1442,  8886,  54758,  337434,  2079362, ... A085447
[7] 2, 7, 51, 364, 2599, 18557, 132498,  946043,  6754799, ... A086902
[8] 2, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, ... A086594
[9] 2, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, ... A087798
A007395|A059100|
    A001477 A079908
		

Crossrefs

Cf. A320570 (main diagonal), A114525, A309220 (variant), A117938 (variant), A352361 (Fibonacci polynomials), A350470 (Jacobsthal polynomials).

Programs

  • Maple
    T := (n, k) -> (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k:
    seq(seq(simplify(T(n - k, k)), k = 0..n), n = 0..10);
  • Mathematica
    Table[LucasL[k, n], {n, 0, 9}, {k, 0, 9}] // TableForm
    (* or *)
    T[ 0, k_] := 2 Mod[k+1, 2]; T[n_, 0] := 2;
    T[n_, k_] := n^k Hypergeometric2F1[1/2 - k/2, -k/2, 1 - k, -4/n^2];
    Table[T[n, k], {n, 0, 9}, {k, 0, 8}] // TableForm
  • PARI
    T(n, k) = ([0, 1; 1, k]^n*[2; k])[1, 1] ;
    export(T)
    for(k = 0, 9, print(parvector(10, n, T(n - 1, k))))

Formula

T(n, k) = Sum_{j=0..floor(k/2)} binomial(k-j, j)*(k/(k-j))*n^(k-2*j) for k >= 1.
T(n, k) = (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k.
T(n, k) = [x^k] ((2 - n*x)/(1 - n*x - x^2)).
T(n, k) = n^k*hypergeom([1/2 - k/2, -k/2], [1 - k], -4/n^2) for n,k >= 1.

A191347 Array read by antidiagonals: ((floor(sqrt(n)) + sqrt(n))^k + (floor(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 1, 1, 0, 8, 7, 4, 2, 1, 0, 16, 17, 10, 8, 2, 1, 0, 32, 41, 28, 32, 9, 2, 1, 0, 64, 99, 76, 128, 38, 10, 2, 1, 0, 128, 239, 208, 512, 161, 44, 11, 2, 1, 0, 256, 577, 568, 2048, 682, 196, 50, 12, 3, 1
Offset: 0

Views

Author

Charles L. Hohn, May 31 2011

Keywords

Examples

			1, 0,  0,   0,    0,    0,     0,      0,       0,        0,        0, ...
1, 1,  2,   4,    8,   16,    32,     64,     128,      256,      512, ...
1, 1,  3,   7,   17,   41,    99,    239,     577,     1393,     3363, ...
1, 1,  4,  10,   28,   76,   208,    568,    1552,     4240,    11584, ...
1, 2,  8,  32,  128,  512,  2048,   8192,   32768,   131072,   524288, ...
1, 2,  9,  38,  161,  682,  2889,  12238,   51841,   219602,   930249, ...
1, 2, 10,  44,  196,  872,  3880,  17264,   76816,   341792,  1520800, ...
1, 2, 11,  50,  233, 1082,  5027,  23354,  108497,   504050,  2341691, ...
1, 2, 12,  56,  272, 1312,  6336,  30592,  147712,   713216,  3443712, ...
1, 3, 18, 108,  648, 3888, 23328, 139968,  839808,  5038848, 30233088, ...
1, 3, 19, 117,  721, 4443, 27379, 168717, 1039681,  6406803, 39480499, ...
1, 3, 20, 126,  796, 5028, 31760, 200616, 1267216,  8004528, 50561600, ...
1, 3, 21, 135,  873, 5643, 36477, 235791, 1524177,  9852435, 63687141, ...
1, 3, 22, 144,  952, 6288, 41536, 274368, 1812352, 11971584, 79078912, ...
1, 3, 23, 153, 1033, 6963, 46943, 316473, 2133553, 14383683, 96969863, ...
...
		

Crossrefs

Row 1 is A000007, row 2 is A011782, row 3 is A001333, row 4 is A026150, row 5 is A081294, row 6 is A001077, row 7 is A084059, row 8 is A108851, row 9 is A084128, row 10 is A081341, row 11 is A005667, row 13 is A141041.
Row 3*2 is A002203, row 4*2 is A080040, row 5*2 is A155543, row 6*2 is A014448, row 8*2 is A080042, row 9*2 is A170931, row 11*2 is A085447.
Cf. A191348 which uses ceiling() in place of floor().

Programs

  • PARI
    T(n, k) = if (n==0, k==0, my(x=sqrtint(n)); sum(i=0, (k+1)\2, binomial(k, 2*i)*x^(k-2*i)*n^i));
    matrix(9,9, n, k, T(n-1,k-1)) \\ Michel Marcus, Aug 22 2019
    
  • PARI
    T(n, k) = if (k==0, 1, if (k==1, sqrtint(n), T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2));
    matrix(9, 9, n, k, T(n-1, k-1)) \\ Charles L. Hohn, Aug 22 2019

Formula

For each row n>=0 let T(n,0)=1 and T(n,1)=floor(sqrt(n)), then for each column k>=2: T(n,k)=T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - Charles L. Hohn, Aug 22 2019
T(n, k) = Sum_{i=0..floor((k+1)/2)} binomial(k, 2*i)*floor(sqrt(n))^(k-2*i)*n^i for n > 0, with T(0, 0) = 1 and T(0, k) = 0 for k > 0. - Michel Marcus, Aug 23 2019
Previous Showing 11-20 of 20 results.