cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A280204 G.f.: Product_{k>=1} (1+x^(k^2)) / (1-x^k).

Original entry on oeis.org

1, 2, 3, 5, 9, 14, 21, 31, 45, 65, 92, 127, 175, 239, 322, 430, 572, 753, 985, 1281, 1657, 2131, 2727, 3471, 4401, 5558, 6988, 8751, 10924, 13588, 16846, 20819, 25653, 31518, 38621, 47195, 57530, 69958, 84869, 102723, 124070, 149532, 179852, 215894, 258668
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 28 2016

Keywords

Comments

Convolution of A033461 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^(k^2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3) + 2^(-5/4)*3^(1/4)*(sqrt(2)-1)*Zeta(3/2)*n^(1/4) - 3*(sqrt(2)-1)^2*Zeta(3/2)^2/(64*Pi)) / (2^(5/2)*sqrt(3)*n).

A172151 Number of partitions of n into two nonsquares.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 2, 3, 4, 4, 4, 5, 5, 5, 5, 7, 6, 7, 7, 8, 9, 9, 8, 9, 10, 10, 10, 11, 11, 13, 12, 13, 13, 13, 13, 15, 15, 15, 15, 16, 17, 17, 17, 18, 18, 19, 18, 20, 20, 20, 20, 21, 21, 23, 22, 23, 24, 24, 24, 25, 26, 25, 25, 27, 26, 27, 27, 28, 29, 30, 29, 30, 30, 31
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 26 2010

Keywords

Comments

A172152 and A172153 give record values and where they occur: a(A172153(n))=A172152(n) and a(m) < A172152(n) for m < A172153(n).

Examples

			a(8) = #{6+2, 5+3} = 2;
a(9) = #{7+2, 6+3} = 2;
a(10) = #{8+2, 7+3, 5+5} = 3;
a(11) = #{8+3, 6+5} = 2;
a(12) = #{10+2, 7+5, 6+6} = 3;
a(13) = #{11+2, 10+3, 8+5, 7+6} = 4.
		

Crossrefs

Programs

  • PARI
    a(n)=n\2 - sqrtint(n) + sum(k=sqrtint(n\2)+1,sqrtint(n), issquare(n-k^2)) \\ Charles R Greathouse IV, Aug 28 2016

Formula

a(n) = n/2 + O(sqrt(n)). - Charles R Greathouse IV, Aug 28 2016

Extensions

Typo in b-file link fixed by Reinhard Zumkeller, Feb 10 2010

A285798 Number of partitions of n into parts with an even number of distinct prime divisors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5, 5, 6, 7, 8, 8, 11, 11, 14, 16, 19, 19, 25, 26, 31, 34, 40, 41, 51, 53, 62, 68, 80, 85, 103, 107, 124, 135, 157, 166, 195, 205, 235, 256, 294, 311, 362, 383, 437, 472, 535, 568, 652, 695, 786, 847, 954, 1016, 1155, 1231, 1381, 1486, 1662, 1774, 1997, 2130, 2377, 2557, 2846
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 26 2017

Keywords

Examples

			a(10) = 3 because we have [10], [6, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Cf. A030231, A087153 (number of partitions into parts with an even number of divisors), A285799.

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[1/(1 - Boole[EvenQ[PrimeNu[k]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^A030231(k)).

A369520 Expansion of Product_{k>=1} 1/((1 - x^(k^2))*(1 - x^k)).

Original entry on oeis.org

1, 2, 4, 7, 13, 21, 34, 52, 80, 119, 175, 251, 359, 504, 702, 965, 1320, 1785, 2401, 3200, 4245, 5589, 7324, 9535, 12364, 15944, 20478, 26175, 33338, 42279, 53438, 67283, 84454, 105642, 131764, 163826, 203149, 251185, 309799, 381079, 467666, 572520, 699342, 852314
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 25 2024

Keywords

Comments

Convolution of A001156 and A000041.
a(n) is the number of pairs (Q(k), P(n-k)), 0<=k<=n, where Q(k) is a partition of k into squares and P(n-k) is a partition of n-k.

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(k^2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3) + 3^(1/4)*zeta(3/2)*n^(1/4)/2^(3/4) - 3*zeta(3/2)^2/(32*Pi)) / (2^(13/4) * 3^(3/4) * sqrt(Pi) * n^(5/4)).

A087154 Number of partitions of n into distinct nonsquares.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 2, 3, 2, 4, 4, 4, 7, 6, 9, 9, 11, 14, 14, 19, 21, 23, 29, 31, 36, 43, 46, 56, 62, 70, 81, 91, 103, 117, 132, 148, 167, 188, 211, 237, 266, 297, 332, 371, 414, 461, 515, 571, 634, 708, 780, 870, 963, 1062, 1180, 1300, 1436, 1588, 1747, 1929, 2123
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 21 2003

Keywords

Examples

			n=7: 2+5 = 7: a(7)=2;
n=8: 2+6 = 3+5 = 8: a(8)=3;
n=9: 2+7 = 3+6: a(9)=2.
		

Crossrefs

Programs

  • Haskell
    a087154 = p a000037_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Apr 25 2013
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^k)/(1 + x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 29 2016 *)

Formula

G.f.: Product_{m>0} (1+x^m)/(1+x^(m^2)). - Vladeta Jovovic, Jul 31 2004
a(n) ~ exp(Pi*sqrt(n/3) - 3^(1/4) * (sqrt(2)-1) * Zeta(3/2) * n^(1/4) / 2 - 3*(sqrt(2)-1)^2 * Zeta(3/2)^2 / (32*Pi)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Dec 30 2016

Extensions

Zeroth term added by Franklin T. Adams-Watters, Jan 25 2010

A225044 Number of partitions of n into non-triangular numbers, cf. A014132.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 2, 2, 4, 4, 5, 6, 9, 10, 13, 14, 21, 22, 30, 32, 44, 48, 62, 69, 89, 100, 124, 141, 173, 198, 239, 274, 330, 377, 450, 514, 611, 697, 823, 939, 1104, 1258, 1470, 1676, 1950, 2220, 2572, 2927, 3381, 3841, 4420, 5019, 5759, 6529, 7470, 8460
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 25 2013

Keywords

Examples

			a(10) = #{8+2, 5+5, 4+4+2, 4+2+2+2, 2+2+2+2+2} = 5;
a(11) = #{11, 9+2, 7+4, 7+2+2, 5+4+2, 5+2+2+2} = 6;
a(12) = #{12, 8+4, 8+2+2, 7+5, 5+5+2, 4+4+4, 4+4+2+2, 4+2+2+2+2, 6x2} = 9;
a(13) = #{13, 11+2, 9+4, 9+2+2, 8+5, 7+4+2, 7+2+2+2, 5+4+4, 5+4+2+2, 5+2+2+2+2} = 10.
		

Crossrefs

Column k=0 of A263234.

Programs

  • Haskell
    a225044 = p a014132_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(i>n or issqr(8*i+1), 0, b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 13 2015
  • Mathematica
    t = Table[n (n + 1)/2, {n, 1, 200}] ; p[n_] := IntegerPartitions[n, All, Complement[Range@n, t]]; Table[p[n], {n, 0, 12}] (*shows partitions*)
    a[n_] := Length@p@n; a /@ Range[0, 80]
    (* Clark Kimberling, Mar 09 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n || IntegerQ @ Sqrt[8*i + 1], 0, b[n - i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=1} (1 - x^(k*(k+1)/2))/(1 - x^k). - Ilya Gutkovskiy, Dec 30 2016
a(n) ~ sqrt(2) * exp(Pi*sqrt(2*n/3) - Zeta(3/2) * (3*n/2)^(1/4) - 3*Zeta(3/2)^2 / (16*Pi)) / sqrt(n). - Vaclav Kotesovec, Jan 01 2017

A286219 Number of partitions of n into parts with an even number of prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 7, 9, 10, 13, 15, 19, 20, 25, 28, 34, 38, 46, 50, 61, 69, 81, 89, 105, 116, 137, 152, 175, 194, 226, 250, 288, 318, 363, 403, 462, 508, 577, 637, 721, 796, 900, 988, 1113, 1228, 1378, 1515, 1696, 1860, 2080, 2287, 2546, 2791, 3106, 3402, 3779
Offset: 0

Views

Author

Ilya Gutkovskiy, May 04 2017

Keywords

Examples

			a(8) = 4 because we have [6, 1, 1], [4, 4], [4, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          `if`(bigomega(d)::odd, 0, d), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, May 04 2017
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - Boole[EvenQ[PrimeOmega[k]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^A028260(k)).

A285309 Sum of nonsquare divisors of n.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 7, 10, 3, 17, 11, 23, 13, 23, 23, 10, 17, 29, 19, 37, 31, 35, 23, 55, 5, 41, 30, 51, 29, 71, 31, 42, 47, 53, 47, 41, 37, 59, 55, 85, 41, 95, 43, 79, 68, 71, 47, 103, 7, 67, 71, 93, 53, 110, 71, 115, 79, 89, 59, 163, 61, 95, 94, 42, 83, 143, 67, 121, 95, 143, 71, 145, 73, 113, 98
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 16 2017

Keywords

Examples

			a(6) = 11 because 6 has 4 divisors {1, 2, 3, 6} among which 3 are nonsquares {2, 3, 6} therefore 2 + 3 + 6 = 11.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, Mod[DivisorSigma[0, #], 2] == 0 &], {n, 1, 75}]
    nmax = 75; Rest[CoefficientList[Series[Sum[(k + Floor[1/2 + Sqrt[k]]) x^(k + Floor[1/2 + Sqrt[k]])/(1 - x^(k + Floor[1/2 + Sqrt[k]])), {k, 1, nmax}], {x, 0, nmax}], x]]
    Array[DivisorSum[#, # &, ! IntegerQ@ Sqrt@ # &] &, 75] (* Michael De Vlieger, Nov 23 2017 *)
  • PARI
    a(n) = sumdiv(n, d, if (!issquare(d), d)); \\ Michel Marcus, Apr 17 2017
    
  • Python
    import gmpy
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if gmpy.is_square(d)==0]) # Indranil Ghosh, Apr 18 2017

Formula

G.f.: Sum_{k>=1} A000037(k)*x^A000037(k)/(1 - x^A000037(k)).
a(n) = A000203(n) - A035316(n).
a(A005117(n)) = A000203(A005117(n)) - 1.
a(p^(2*k-1)) = a(p^(2*k)) = p*(p^(2*k) - 1)/(p^2 - 1) for p is a prime and k >= 1.

A369519 Expansion of Product_{k>=1} 1/((1 - x^(k^2))*(1 - x^(k^3))).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 16, 21, 26, 31, 38, 46, 54, 62, 74, 88, 103, 118, 137, 158, 180, 202, 230, 263, 298, 335, 378, 426, 476, 528, 589, 658, 732, 810, 900, 998, 1101, 1208, 1330, 1465, 1608, 1760, 1930, 2116, 2310, 2513, 2738, 2985, 3246, 3521, 3826, 4156
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 25 2024

Keywords

Comments

Convolution of A001156 and A003108.
a(n) is the number of pairs (Q(k), P(n-k)), 0<=k<=n, where Q(k) is a partition of k into squares and P(n-k) is a partition of n-k into cubes.

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(k^2))/(1-x^(k^3)), {k, 1, nmax^(1/2)}], {x, 0, nmax}], x]

Formula

a(n) ~ zeta(3/2) * exp(3 * Pi^(1/3) * zeta(3/2)^(2/3) * n^(1/3) / 2^(4/3) + 2^(4/9) * Gamma(1/3) * zeta(4/3) * n^(2/9) / (3 * Pi^(1/9) * zeta(3/2)^(2/9)) - 4*2^(2/9) * Gamma(1/3)^2 * zeta(4/3)^2 * n^(1/9) / (243 * Pi^(5/9) * zeta(3/2)^(10/9)) + 16*Gamma(1/3)^3 * zeta(4/3)^3 / (6561 * Pi * zeta(3/2)^2)) / (16 * sqrt(6) * Pi^(5/2) * n^(3/2)) * (1 + (13*2^(7/9) * Gamma(1/3) * zeta(4/3) / (81 * Pi^(4/9) * zeta(3/2)^(8/9)) + 832*2^(7/9) * Gamma(1/3)^4 * zeta(4/3)^4 / (1594323 * Pi^(13/9) * zeta(3/2)^(26/9))) / n^(1/9) + (692224 * 2^(5/9) * Gamma(1/3)^8 * zeta(4/3)^8 / (2541865828329 * Pi^(26/9) * zeta(3/2)^(52/9)) - 128 * 2^(5/9) * Gamma(1/3)^5 * zeta(4/3)^5 / (4782969 * Pi^(17/9) * zeta(3/2)^(34/9)) + 65*2^(5/9) * Gamma(1/3)^2 * zeta(4/3)^2 / (2187*Pi^(8/9) * zeta(3/2)^(16/9)))/n^(2/9)).

A303947 Number of partitions of n into at most 1 copy of 2^2, 2 copies of 3^2, 3 copies of 4^2, ... .

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 2, 0, 1, 0, 3, 0, 1, 1, 2, 3, 0, 2, 1, 4, 0, 1, 2, 2, 2, 0, 4, 1, 2, 1, 3, 3, 1, 3, 1, 5, 1, 3, 2, 4, 3, 1, 4, 2, 4, 1, 5, 3, 3, 4, 4, 6, 2, 4
Offset: 0

Views

Author

Seiichi Manyama, May 03 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>=2} (1-x^(k^3))/(1-x^(k^2)).
Previous Showing 11-20 of 26 results. Next