cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A117522 Numbers k such that L(2*k + 1) is prime, where L(m) is a Lucas number.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 15, 18, 20, 23, 26, 30, 35, 39, 56, 156, 176, 251, 306, 308, 431, 548, 680, 2393, 2396, 2925, 3870, 4233, 5345, 6125, 6981, 7224, 9734, 17724, 18389, 22253, 25584, 28001, 40835, 44924, 47411, 70028, 74045, 79760, 91544, 96600, 101333, 172146, 193716, 221804, 266138, 287109, 308393, 315590, 318875, 325910, 346073, 450828, 525924
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 26 2006

Keywords

Comments

For n = 24..43, we can only claim that L(2*a(n) + 1) is a probable prime. Sequence arises in a study of A269254; for detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018

Examples

			If k = 56, then L(2*k + 1) is a prime with twenty-four digits.
		

Crossrefs

Extensions

Values beyond 680 from L. Edson Jeffery, et al., Feb 02 2018
a(44)-a(56) from Robert Price, Jun 12 2025
a(57)-a(59) (using data in A001606) from Alois P. Heinz, Jun 12 2025

A269253 Smallest prime in the sequence s(k) = n*s(k-1) - s(k-2), with s(0) = 1, s(1) = n + 1 (or -1 if no such prime exists).

Original entry on oeis.org

2, 3, 11, 5, 29, 7, -1, 71, 89, 11, 131, 13, 181, -1, 239, 17, 5167, 19, 379, 419, 461, 23, -1, 599, 251894449, 701, 20357, 29, 25171, 31, 991, 36002209323169, 47468744103199, -1, 1259, 37, 2625505273, 1481, 1559, 41, 1721, 43, 150103799, 1979, 2069, 47, -1, 2351, 287762399
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 09 2016

Keywords

Comments

For n >= 3, smallest prime of the form (x^y - 1/x^y)/(x - 1/x), where x = (sqrt(n+2) +/- sqrt(n-2))/2 and y is an odd positive integer, or -1 if no such prime exists.
When n=7, the sequence {s(k)} is A033890, which is Fibonacci(4i+2), and since x|y <=> F_x|F_y, and 2i+1|4i+2, A033890 is never prime, and so a(7) = -1. What is the proof for the other entries that are -1? Answer: See the Comments in A269254. - N. J. A. Sloane, Oct 22 2017
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018

Crossrefs

Programs

  • Magma
    lst:=[]; for n in [1..49] do if n gt 2 and IsSquare(n+2) then Append(~lst, -1); else a:=n+1; c:=1; if IsPrime(a) then Append(~lst, a); else repeat b:=n*a-c; c:=a; a:=b; until IsPrime(a); Append(~lst, a); end if; end if; end for; lst;
  • Mathematica
    terms = 172;
    kmax = 120;
    a[n_] := Module[{s, k}, s[k_] := s[k] = n s[k-1] - s[k-2]; s[0] = 1; s[1] = n+1; For[k = 1, k <= kmax, k++, If[PrimeQ[s[k]], Return[s[k]]]]];
    Array[a, terms] /. Null -> -1 (* Jean-François Alcover, Aug 30 2018 *)

Formula

If n is prime then a(n-1) = n.

A299045 Rectangular array: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*(-n)^(k-j), n >= 1, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, -1, -1, 1, -2, 1, 1, 1, -3, 5, -1, 0, 1, -4, 11, -13, 1, -1, 1, -5, 19, -41, 34, -1, 1, 1, -6, 29, -91, 153, -89, 1, 0, 1, -7, 41, -169, 436, -571, 233, -1, -1, 1, -8, 55, -281, 985, -2089, 2131, -610, 1, 1, 1, -9, 71, -433, 1926, -5741, 10009, -7953, 1597, -1, 0
Offset: 1

Views

Author

Keywords

Comments

This array is used to compute A269252: A269252(n) = least k such that |A(n,k)| is a prime, or -1 if no such k exists.
For detailed theory, see [Hone].
The array can be extended to k<0 with A(n, k) = -A(n, -k-1) for all k in Z. - Michael Somos, Jun 19 2023

Examples

			Array begins:
1   0  -1     1     0      -1       1         0        -1           1
1  -1   1    -1     1      -1       1        -1         1          -1
1  -2   5   -13    34     -89     233      -610      1597       -4181
1  -3  11   -41   153    -571    2131     -7953     29681     -110771
1  -4  19   -91   436   -2089   10009    -47956    229771    -1100899
1  -5  29  -169   985   -5741   33461   -195025   1136689    -6625109
1  -6  41  -281  1926  -13201   90481   -620166   4250681   -29134601
1  -7  55  -433  3409  -26839  211303  -1663585  13097377  -103115431
1  -8  71  -631  5608  -49841  442961  -3936808  34988311  -310957991
1  -9  89  -881  8721  -86329  854569  -8459361  83739041  -828931049
		

Crossrefs

Cf. A094954 (unsigned version of this array, but missing the first row).

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[LinearRecurrence[{-n, -1}, {1, 1 - n}, 10], {n, 10}]]
    (*Array antidiagonals flattened (gives this sequence):*)
    A299045[n_, k_] := Sum[(-1)^(Floor[j/2]) Binomial[k - Floor[(j + 1)/2], Floor[j/2]] (-n)^(k - j), {j, 0, k}]; Flatten[Table[A299045[n - k, k], {n, 11}, {k, 0, n - 1}]]
  • PARI
    {A(n, k) = sum(j=0, k, (-1)^(j\2)*binomial(k-(j+1)\2, j\2)*(-n)^(k-j))}; /* Michael Somos, Jun 19 2023 */

Formula

G.f. for row n: (1 + x)/(1 + n*x + x^2), n >= 1.
A(n, k) = B(-n, k) where B = A294099. - Michael Somos, Jun 19 2023

A299071 Union_{odd primes p, n >= 3} {T_p(n)}, where T_m(x) = x*T_{m-1}(x) - T_{m-2}(x), m >= 2, T_0(x) = 2, T_1(x) = x (dilated Chebyshev polynomials of the first kind).

Original entry on oeis.org

18, 52, 110, 123, 198, 488, 702, 724, 843, 970, 1298, 1692, 2158, 2525, 3330, 4048, 4862, 5778, 6726, 6802, 7940, 9198, 10084, 10582, 13752, 15550, 17498, 19602, 21868, 24302, 26910, 29698, 30248, 32672, 35838, 39603, 42770, 46548, 50542
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
Sequence avoids numbers of the form T_p(T_2(j)).

Crossrefs

Programs

  • Mathematica
    maxT = 55000; maxn = 12;
    T[0][] = 2; T[1][x] = x;
    T[m_][x_] := T[m][x] = x T[m-1][x] - T[m-2][x];
    TT = Table[T[p][n], {p, Prime[Range[2, maxn]]}, {n, 3, Prime[maxn]}] // Flatten // Union // Select[#, # <= maxT&]&;
    avoid = Table[T[p][T[2][n]], {p, Prime[Range[2, maxn]]}, {n, 3, Prime[maxn] }] // Flatten // Union // Select[#, # <= maxT&]&;
    Complement[TT, avoid] (* Jean-François Alcover, Nov 03 2018 *)

A299100 Indices k such that s_k(4) is a (probable) prime, where s_k(4) = 4*s_{k-1}(4) - s_{k-2}(4), k >= 2, s_0(4) = 1, s_1(4) = 5.

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 18, 146, 216, 293, 704, 1143, 1530, 1593, 2924, 7163, 9176, 9489, 11531, 39543, 50423, 60720, 62868, 69993, 69995, 88103, 88163, 104606, 164441, 178551
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
a(31) > 2*10^5. - Robert Price, May 29 2020

Crossrefs

Programs

  • Mathematica
    s[k_, m_] := s[k, m] = Which[k == 0, 1, k == 1, 1 + m, True, m s[k - 1, m] - s[k - 2, m]]; Select[Range@ 2000, PrimeQ@ Abs@ s[#, 4] &] (* Michael De Vlieger, Feb 03 2018 *)

Extensions

a(24)-a(30) from Robert Price, May 29 2020

A299101 Indices of (probable) primes in A030221.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 15, 18, 23, 53, 114, 194, 564, 575, 585, 2594, 3143, 4578, 4970, 9261, 11508, 13298, 30018, 54993, 198476
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
a(25) > 2*10^5. - Robert Price, Jul 03 2020

Crossrefs

Programs

Formula

A299109(n) = A030221(a(n)). - R. J. Mathar, Jul 22 2022

Extensions

a(24) from Robert Price, Jul 03 2020

A299107 Probable primes in sequence {s_k(4)}, where s_k(4) = 4*s_{k-1}(4) - s_{k-2}(4), k >= 2, s_0(4) = 1, s_1(4) = 5.

Original entry on oeis.org

5, 19, 71, 3691, 191861, 138907099, 26947261171, 436315574686414344004975231616076636245689199862837798457639364993981991744926792179
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
Subsequent terms have too many digits to display.

Crossrefs

Formula

a(n) = s_{A299100(n)}(4) = A001834(A299100(n)).

A298878 Union_{p prime, n >= 0} {T_p(n)}, where T_m(x) = x*T_{m-1}(x) - T_{m-2}(x), m >= 2, T_0(x) = 2, T_1(x) = x (dilated Chebyshev polynomials of the first kind).

Original entry on oeis.org

-2, -1, 0, 1, 2, 7, 14, 18, 23, 34, 47, 52, 62, 79, 98, 110, 119, 123, 142, 167, 194, 198, 223, 254, 287, 322, 359, 398, 439, 482, 488, 527, 574, 623, 674, 702, 724, 727, 782, 839, 843, 898, 959, 970, 1022, 1087, 1154, 1223, 1294, 1298, 1367, 1442, 1519, 1598
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].

Crossrefs

A066885 a(n) = (prime(n)^2 + 1)/2.

Original entry on oeis.org

5, 13, 25, 61, 85, 145, 181, 265, 421, 481, 685, 841, 925, 1105, 1405, 1741, 1861, 2245, 2521, 2665, 3121, 3445, 3961, 4705, 5101, 5305, 5725, 5941, 6385, 8065, 8581, 9385, 9661, 11101, 11401, 12325, 13285, 13945, 14965, 16021, 16381, 18241, 18625
Offset: 2

Views

Author

Enoch Haga, Jan 22 2002

Keywords

Comments

a(n) is the average of the numbers from 1 to prime(n)^2. It's also the average of the primes in a prime(n) X prime(n) example of Haga's conjecture (see link below).
If a(n) is a square c^2, then prime(n) is an NSW prime (A088165) and a prime RMS number (A140480). - Ctibor O. Zizka, Aug 26 2008
The sequence starts with a(2) = (3^2 + 1)/2 = 5 since a(1) would be (2^2 + 1)/2 = 5/2. - Michael B. Porter, Dec 14 2009

Crossrefs

Cf. A084921.
Partial sums of A124434.

Programs

Formula

a(n) = 1 + A084921(n). - R. J. Mathar, Sep 30 2011
a(n) mod 4 = 1. - Altug Alkan, Apr 08 2016
Product_{n>=2} (1 - 1/a(n)) = 2/3. - Amiram Eldar, Jun 03 2022

Extensions

Edited by Dean Hickerson, Jun 08 2002

A065876 a(n) is the smallest m > n such that n^2 + 1 divides m^2 + 1.

Original entry on oeis.org

1, 3, 3, 7, 13, 21, 31, 43, 18, 73, 91, 111, 17, 47, 183, 211, 241, 133, 57, 343, 381, 47, 172, 83, 553, 601, 651, 173, 342, 813, 242, 265, 132, 403, 411, 1191, 1261, 237, 327, 1483, 1561, 1641, 748, 857, 850, 1981, 684, 463, 413, 2353, 255, 2551, 593, 1177, 2863, 123, 3081, 307, 1288, 3423
Offset: 0

Views

Author

Benoit Cloitre, Dec 07 2001

Keywords

Comments

a(n) exists because n^2 + 1 divides (n^2 - n + 1)^2 + 1. The set of n such a(n) = n^2 - n + 1 is S = (2, 3, 4, 5, 6, 7, 9, 11, 14, 15, ...).
a(n) = n^2 - n + 1 whenever n^2 + 1 is prime or twice a prime. Up to n=1000, the only other n for which a(n) = n^2 - n + 1 are 7, 41 and 239. Is it a coincidence that these are NSW primes (A088165)? - Franklin T. Adams-Watters, Oct 17 2006
It appears that the density of even numbers in this sequence approaches a limit near 1/4. It appears that the density of even values for indices where a(n) != n^2 - n + 1 is approaching a number near 1/4 and based on the previous comment the density of n for which a(n) = n^2 - n + 1 is almost certainly 0. - Franklin T. Adams-Watters, Oct 17 2006

Crossrefs

Programs

  • Mathematica
    Do[k = 1; While[m = (k^2 + 1)/(n^2 + 1); m < 2 || !IntegerQ[m], k++ ]; Print[k], {n, 1, 40 } ]
  • PARI
    a(n) = { my(m=n+1); while ((m^2 + 1)%(n^2 + 1) != 0, m++); m } \\ Harry J. Smith, Nov 03 2009

Extensions

More terms from Robert G. Wilson v, Dec 11 2001
Further terms from Franklin T. Adams-Watters, Oct 17 2006
Previous Showing 11-20 of 34 results. Next