A144303
Square array A(n,m), n>=0, m>=0, read by antidiagonals: A(n,m) = n-th number of the m-th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 29, 1, 1, 5, 22, 81, 212, 1, 1, 6, 33, 163, 689, 2117, 1, 1, 7, 46, 281, 1564, 7553, 26830, 1, 1, 8, 61, 441, 2993, 18679, 101961, 412015, 1, 1, 9, 78, 649, 5156, 38705, 268714, 1639529, 7433032, 1, 1, 10, 97, 911, 8257, 71801, 592489, 4538209, 30640257, 154076201, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 6, 13, 22, 33, 46, 61, ...
1, 29, 81, 163, 281, 441, 649, ...
1, 212, 689, 1564, 2993, 5156, 8257, ...
1, 2117, 7553, 18679, 38705, 71801, 123217, ...
1, 26830, 101961, 268714, 592489, 1166886, 2120545, ...
Columns m=0-10 give:
A000012,
A088957,
A089461,
A089464,
A218496,
A218497,
A218498,
A218499,
A218500,
A218501,
A218502.
-
hymtr:= proc(p) proc(n,m) `if`(m=0, p(n), m*add(
p(k)*binomial(n, k) *(n-k+m)^(n-k-1), k=0..n))
end end:
A:= hymtr(1):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
a[, 0] = 1; a[n, k_] := Sum[k*(n - j + k)^(n - j - 1)*Binomial[n, j], {j, 0, n}]; Table[a[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jun 24 2013 *)
A369145
Number of unlabeled loop-graphs with up to n vertices such that it is possible to choose a different vertex from each edge (choosable).
Original entry on oeis.org
1, 2, 5, 12, 30, 73, 185, 467, 1207, 3147, 8329, 22245, 60071, 163462, 448277, 1236913, 3432327, 9569352, 26792706, 75288346, 212249873, 600069431, 1700826842, 4831722294, 13754016792, 39224295915, 112048279650, 320563736148, 918388655873, 2634460759783, 7566000947867
Offset: 0
The a(0) = 1 through a(3) = 12 loop-graphs (loops shown as singletons):
{} {} {} {}
{{1}} {{1}} {{1}}
{{1,2}} {{1,2}}
{{1},{2}} {{1},{2}}
{{1},{1,2}} {{1},{1,2}}
{{1},{2,3}}
{{1,2},{1,3}}
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1,2},{1,3},{2,3}}
Without the choice condition we get
A000666, labeled
A006125 (shifted left).
The complement for exactly n edges and no loops is
A369201, labeled
A369143.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]
A360193
a(n) = Sum_{k=0..n} (k-1)^(k-1) * binomial(n,k).
Original entry on oeis.org
-1, 0, 2, 9, 52, 445, 5166, 75019, 1300776, 26167257, 598577770, 15337224991, 435020120316, 13529095809541, 457727913937854, 16736043791509995, 657590281425958096, 27631245762003186865, 1236355641557737359570, 58689534518861119967287
Offset: 0
-
a(n) = sum(k=0, n, (k-1)^(k-1)*binomial(n, k));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-x))))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(x*exp(x)/lambertw(-x)))
A362522
a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(k-1) / (k! * (n-2*k)!).
Original entry on oeis.org
1, 1, 3, 7, 49, 201, 2491, 14743, 266337, 2055889, 49051891, 466650471, 13873711633, 156839920537, 5591748678699, 73222243463671, 3046762637864641, 45346835284775073, 2158148557098011107, 35980450963558606279, 1928292118820446611441
Offset: 0
A362523
a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) / (k! * (n-3*k)!).
Original entry on oeis.org
1, 1, 1, 7, 25, 61, 1201, 7771, 30577, 1058905, 9904321, 53722351, 2708688841, 33126146197, 228967340785, 15262865820931, 230517745701601, 1936173471789361, 161021598306402817, 2894434429492525015, 28614958982310290041
Offset: 0
A372315
Expansion of e.g.f. exp( x - LambertW(-2*x)/2 ).
Original entry on oeis.org
1, 2, 8, 68, 960, 18832, 471136, 14324480, 512733696, 21119803136, 984029612544, 51169331031040, 2937675286583296, 184560174104465408, 12594824112085327872, 927757127285523243008, 73369903633161123397632, 6200198958236463387836416
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-2*x)/2)))
-
a(n) = sum(k=0, n, (2*k+1)^(k-1)*binomial(n, k));
A372316
Expansion of e.g.f. exp( x - LambertW(-3*x)/3 ).
Original entry on oeis.org
1, 2, 10, 125, 2644, 77597, 2904382, 132169403, 7083715240, 437031850841, 30506442905194, 2377038378159359, 204521399708464252, 19259006462435865413, 1970114326513629358654, 217556451608123850352523, 25794252755430105917806288, 3268152272130255473300883377
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x)/3)))
-
a(n) = sum(k=0, n, (3*k+1)^(k-1)*binomial(n, k));
A144289
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows: Number T(n,k) of forests of labeled rooted trees on n or fewer nodes using a subset of labels 1..n and k edges.
Original entry on oeis.org
1, 2, 0, 4, 2, 0, 8, 12, 9, 0, 16, 48, 84, 64, 0, 32, 160, 480, 820, 625, 0, 64, 480, 2160, 6120, 10230, 7776, 0, 128, 1344, 8400, 34720, 94500, 155274, 117649, 0, 256, 3584, 29568, 165760, 647920, 1712592, 2776200, 2097152, 0, 512, 9216, 96768, 701568, 3669120, 13783392, 35630784, 57138120, 43046721, 0
Offset: 0
T(3,1) = 12, because there are 12 forests of labeled rooted trees on 3 or fewer nodes using a subset of labels 1..3 and 1 edge:
.1<2. .2<1. .1<3. .3<1. .2<3. .3<2. .1<2. .2<1. .1<3. .3<1. .2<3. .3<2.
..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... .....
..... ..... ..... ..... ..... ..... .3... .3... .2... .2... .1... .1...
Triangle begins:
1;
2, 0;
4, 2, 0;
8, 12, 9, 0;
16, 48, 84, 64, 0;
32, 160, 480, 820, 625, 0;
First lower diagonal gives
A000169 with first term 2.
-
T:= proc(n,k) option remember;
if k=0 then 2^n
elif k<0 or n<=k then 0
elif k=n-1 then n^(n-1)
else add(binomial(n-1, j) *T(j+1, j) *T(n-1-j, k-j), j=0..k)
fi
end:
seq(seq(T(n, k), k=0..n), n=0..11);
-
T[n_, k_] := T[n, k] = Which[k == 0, 2^n, k<0 || n <= k, 0, k == n-1, n^(n-1), True, Sum[Binomial[n-1, j]*T[j+1, j]*T[n-1-j, k-j], {j, 0, k}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Jan 21 2014, translated from Alois P. Heinz's Maple code *)
A361718
Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 15, 9, 1;
0, 316, 198, 28, 1;
0, 16885, 10710, 1610, 75, 1;
...
Cf.
A000169,
A059201,
A082402,
A088957,
A133686,
A334282,
A350415,
A367904,
A367908,
A368600,
A368601.
-
nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]
A372320
Expansion of e.g.f. -exp( x + LambertW(-2*x)/2 ).
Original entry on oeis.org
-1, 0, 4, 36, 464, 8560, 206112, 6104896, 214376192, 8701657344, 400748710400, 20642974511104, 1175888936749056, 73389707156586496, 4980134850525986816, 365062349226075463680, 28747688571714736160768, 2420266280392895064506368
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-2*x)/2)))
-
a(n) = sum(k=0, n, (2*k-1)^(k-1)*binomial(n, k));
Comments