cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A144303 Square array A(n,m), n>=0, m>=0, read by antidiagonals: A(n,m) = n-th number of the m-th iteration of the hyperbinomial transform on the sequence of 1's.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 29, 1, 1, 5, 22, 81, 212, 1, 1, 6, 33, 163, 689, 2117, 1, 1, 7, 46, 281, 1564, 7553, 26830, 1, 1, 8, 61, 441, 2993, 18679, 101961, 412015, 1, 1, 9, 78, 649, 5156, 38705, 268714, 1639529, 7433032, 1, 1, 10, 97, 911, 8257, 71801, 592489, 4538209, 30640257, 154076201, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2008, revised Oct 30 2012

Keywords

Comments

See A088956 for the definition of the hyperbinomial transform.
A(n,m), n>=0, m>=0, is the number of subtrees of the complete graph K_{n+m} on n+m vertices containing a given, fixed subtree on m vertices. - Alex Chin, Jul 25 2013

Examples

			Square array begins:
  1,     1,      1,      1,      1,       1,       1, ...
  1,     2,      3,      4,      5,       6,       7, ...
  1,     6,     13,     22,     33,      46,      61, ...
  1,    29,     81,    163,    281,     441,     649, ...
  1,   212,    689,   1564,   2993,    5156,    8257, ...
  1,  2117,   7553,  18679,  38705,   71801,  123217, ...
  1, 26830, 101961, 268714, 592489, 1166886, 2120545, ...
		

Crossrefs

Rows n=0-2 give: A000012, A000027, A028872.
Main diagonal gives A252766.

Programs

  • Maple
    hymtr:= proc(p) proc(n,m) `if`(m=0, p(n), m*add(
               p(k)*binomial(n, k) *(n-k+m)^(n-k-1), k=0..n))
            end end:
    A:= hymtr(1):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[, 0] = 1; a[n, k_] := Sum[k*(n - j + k)^(n - j - 1)*Binomial[n, j], {j, 0, n}]; Table[a[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jun 24 2013 *)

Formula

E.g.f. of column k: exp(x) * (-LambertW(-x)/x)^k.
A(n,k) = Sum_{j=0..n} k * (n-j+k)^(n-j-1) * C(n,j).

A369145 Number of unlabeled loop-graphs with up to n vertices such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 2, 5, 12, 30, 73, 185, 467, 1207, 3147, 8329, 22245, 60071, 163462, 448277, 1236913, 3432327, 9569352, 26792706, 75288346, 212249873, 600069431, 1700826842, 4831722294, 13754016792, 39224295915, 112048279650, 320563736148, 918388655873, 2634460759783, 7566000947867
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Comments

a(n) is the number of graphs with loops on n unlabeled vertices with every connected component having no more edges than vertices. - Andrew Howroyd, Feb 02 2024

Examples

			The a(0) = 1 through a(3) = 12 loop-graphs (loops shown as singletons):
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{1,2}}      {{1,2}}
             {{1},{2}}    {{1},{2}}
             {{1},{1,2}}  {{1},{1,2}}
                          {{1},{2,3}}
                          {{1,2},{1,3}}
                          {{1},{2},{3}}
                          {{1},{2},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we get A000666, labeled A006125 (shifted left).
The case of a unique choice is A087803, labeled A088957.
Without loops we have A134964, labeled A133686 (covering A367869).
For exactly n edges and no loops we have A137917, labeled A137916.
The labeled version is A368927, covering A369140.
The labeled complement is A369141, covering A369142.
For exactly n edges we have A368984, labeled A333331 (maybe).
The complement for exactly n edges is A368835, labeled A368596.
The complement is counted by A369146, labeled A369141 (covering A369142).
The covering case is A369200.
The complement for exactly n edges and no loops is A369201, labeled A369143.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A322661 counts labeled covering loop-graphs, unlabeled A322700.
A367867 counts non-choosable labeled graphs, covering A367868.
A368927 counts choosable labeled loop-graphs, covering A369140.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]

Formula

Partial sums of A369200.
Euler transform of A369289. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A360193 a(n) = Sum_{k=0..n} (k-1)^(k-1) * binomial(n,k).

Original entry on oeis.org

-1, 0, 2, 9, 52, 445, 5166, 75019, 1300776, 26167257, 598577770, 15337224991, 435020120316, 13529095809541, 457727913937854, 16736043791509995, 657590281425958096, 27631245762003186865, 1236355641557737359570, 58689534518861119967287
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (k-1)^(k-1)*binomial(n, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-x))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(x*exp(x)/lambertw(-x)))

Formula

E.g.f.: -exp(x + LambertW(-x)).
E.g.f.: x * exp(x) / LambertW(-x).
a(n) ~ exp(exp(-1)-1) * n^(n-1). - Vaclav Kotesovec, Mar 06 2023

A362522 a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(k-1) / (k! * (n-2*k)!).

Original entry on oeis.org

1, 1, 3, 7, 49, 201, 2491, 14743, 266337, 2055889, 49051891, 466650471, 13873711633, 156839920537, 5591748678699, 73222243463671, 3046762637864641, 45346835284775073, 2158148557098011107, 35980450963558606279, 1928292118820446611441
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^2))))

Formula

E.g.f.: exp(x - LambertW(-x^2)) = -LambertW(-x^2)/x^2 * exp(x).
a(n) ~ sqrt(2) * (exp(2*exp(-1/2)) + (-1)^n) * n^(n-1) / exp(n/2 + exp(-1/2) - 1). - Vaclav Kotesovec, Aug 05 2025

A362523 a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) / (k! * (n-3*k)!).

Original entry on oeis.org

1, 1, 1, 7, 25, 61, 1201, 7771, 30577, 1058905, 9904321, 53722351, 2708688841, 33126146197, 228967340785, 15262865820931, 230517745701601, 1936173471789361, 161021598306402817, 2894434429492525015, 28614958982310290041
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3))))

Formula

E.g.f.: exp(x - LambertW(-x^3)) = -LambertW(-x^3)/x^3 * exp(x).
a(n) ~ sqrt(3) * (exp(3*exp(-1/3)/2) + 2*cos(sqrt(3)*exp(-1/3)/2 - 2*Pi*n/3)) * n^(n-1) / exp(2*n/3 + exp(-1/3)/2 - 1). - Vaclav Kotesovec, Aug 05 2025

A372315 Expansion of e.g.f. exp( x - LambertW(-2*x)/2 ).

Original entry on oeis.org

1, 2, 8, 68, 960, 18832, 471136, 14324480, 512733696, 21119803136, 984029612544, 51169331031040, 2937675286583296, 184560174104465408, 12594824112085327872, 927757127285523243008, 73369903633161123397632, 6200198958236463387836416
Offset: 0

Views

Author

Seiichi Manyama, Apr 27 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-2*x)/2)))
    
  • PARI
    a(n) = sum(k=0, n, (2*k+1)^(k-1)*binomial(n, k));

Formula

a(n) = Sum_{k=0..n} (2*k+1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (2*k+1)^(k-1) * x^k / (1-x)^(k+1).
a(n) ~ 2^(n-1) * n^(n-1) * exp((exp(-1) + 1)/2). - Vaclav Kotesovec, May 04 2024

A372316 Expansion of e.g.f. exp( x - LambertW(-3*x)/3 ).

Original entry on oeis.org

1, 2, 10, 125, 2644, 77597, 2904382, 132169403, 7083715240, 437031850841, 30506442905194, 2377038378159359, 204521399708464252, 19259006462435865413, 1970114326513629358654, 217556451608123850352523, 25794252755430105917806288, 3268152272130255473300883377
Offset: 0

Views

Author

Seiichi Manyama, Apr 27 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x)/3)))
    
  • PARI
    a(n) = sum(k=0, n, (3*k+1)^(k-1)*binomial(n, k));

Formula

a(n) = Sum_{k=0..n} (3*k+1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (3*k+1)^(k-1) * x^k / (1-x)^(k+1).
a(n) ~ 3^(n-1) * n^(n-1) * exp((exp(-1) + 1)/3). - Vaclav Kotesovec, May 04 2024

A144289 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows: Number T(n,k) of forests of labeled rooted trees on n or fewer nodes using a subset of labels 1..n and k edges.

Original entry on oeis.org

1, 2, 0, 4, 2, 0, 8, 12, 9, 0, 16, 48, 84, 64, 0, 32, 160, 480, 820, 625, 0, 64, 480, 2160, 6120, 10230, 7776, 0, 128, 1344, 8400, 34720, 94500, 155274, 117649, 0, 256, 3584, 29568, 165760, 647920, 1712592, 2776200, 2097152, 0, 512, 9216, 96768, 701568, 3669120, 13783392, 35630784, 57138120, 43046721, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2008

Keywords

Examples

			T(3,1) = 12, because there are 12 forests of labeled rooted trees on 3 or fewer nodes using a subset of labels 1..3 and 1 edge:
  .1<2. .2<1. .1<3. .3<1. .2<3. .3<2. .1<2. .2<1. .1<3. .3<1. .2<3. .3<2.
  ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... .....
  ..... ..... ..... ..... ..... ..... .3... .3... .2... .2... .1... .1...
Triangle begins:
   1;
   2,   0;
   4,   2,   0;
   8,  12,   9,   0;
  16,  48,  84,  64,   0;
  32, 160, 480, 820, 625,  0;
		

Crossrefs

Columns 0, 1 give A000079, A001815.
First lower diagonal gives A000169 with first term 2.
Row sums give A088957.

Programs

  • Maple
    T:= proc(n,k) option remember;
          if k=0 then 2^n
        elif k<0 or n<=k then 0
        elif k=n-1 then n^(n-1)
        else add(binomial(n-1, j) *T(j+1, j) *T(n-1-j, k-j), j=0..k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..11);
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, 2^n, k<0 || n <= k, 0, k == n-1, n^(n-1), True, Sum[Binomial[n-1, j]*T[j+1, j]*T[n-1-j, k-j], {j, 0, k}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Jan 21 2014, translated from Alois P. Heinz's Maple code *)

Formula

T(n,0) = 2^n, T(n,k) = 0 if k < 0 or n <= k, otherwise T(n,k) = n^(n-1) if k=n-1, otherwise T(n,k) = Sum_{j=0..k} C(n-1,j)*T(j+1,j)*T(n-1-j,k-j).

A361718 Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 02 2023

Keywords

Comments

Also the number of sets of n nonempty subsets of {1..n}, k of which are singletons, such that there is only one way to choose a different element from each. For example, row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}} {{1},{2},{1,2,3}}
{{3},{1,2},{2,3}} {{1},{3},{1,2,3}}
{{3},{1,3},{2,3}} {{2},{3},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}

Examples

			Triangle begins:
  1;
  0,     1;
  0,     2,     1;
  0,    15,     9,    1;
  0,   316,   198,   28,  1;
  0, 16885, 10710, 1610, 75, 1;
  ...
		

Crossrefs

Cf. A058876 (mirror), A361579, A224069.
Row-sums are A003024, unlabeled A003087.
Column k = 1 is A003025(n) = |n*A134531(n)|.
Column k = n-1 is A058877.
For fixed sinks we get A368602.
A058891 counts set-systems, unlabeled A000612.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
    nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]

Formula

T(n,k) = A368602(n,k) * binomial(n,k). - Gus Wiseman, Jan 03 2024

A372320 Expansion of e.g.f. -exp( x + LambertW(-2*x)/2 ).

Original entry on oeis.org

-1, 0, 4, 36, 464, 8560, 206112, 6104896, 214376192, 8701657344, 400748710400, 20642974511104, 1175888936749056, 73389707156586496, 4980134850525986816, 365062349226075463680, 28747688571714736160768, 2420266280392895064506368
Offset: 0

Views

Author

Seiichi Manyama, Apr 27 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-2*x)/2)))
    
  • PARI
    a(n) = sum(k=0, n, (2*k-1)^(k-1)*binomial(n, k));

Formula

a(n) = Sum_{k=0..n} (2*k-1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (2*k-1)^(k-1) * x^k / (1-x)^(k+1).
a(n) ~ 2^(n-1) * n^(n-1) * exp((exp(-1) - 1)/2). - Vaclav Kotesovec, May 06 2024
Previous Showing 11-20 of 26 results. Next