A232193
Numerators of the expected value of the length of a random cycle in a random n-permutation.
Original entry on oeis.org
1, 3, 23, 55, 1901, 4277, 198721, 16083, 14097247, 4325321, 2132509567, 4527766399, 13064406523627, 905730205, 13325653738373, 362555126427073, 14845854129333883, 57424625956493833, 333374427829017307697, 922050973293317, 236387355420350878139797
Offset: 1
Expectations for n=1,... are 1/1, 3/2, 23/12, 55/24, 1901/720, 4277/1440, 198721/60480, 16083/4480, ... = A232193/A232248
For n=3 there are 6 permutations. We have probability 1/6 of selecting (1)(2)(3) and the cycle size is 1. We have probability 3/6 of selecting a permutation with cycle type (1)(23) and (on average) the cycle length is 3/2. We have probability 2/6 of selecting a permutation of the form (123) and the cycle size is 3. 1/6*1 + 3/6*3/2 + 2/6*3 = 23/12.
Cf.
A028417(n)/n! the expected value of the length of the shortest cycle in a random n-permutation.
Cf.
A028418(n)/n! the expected value of the length of the longest cycle in a random n-permutation.
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j
*b(n-i*j, i-1) *x^j, j=0..n/i))))
end:
a:= n->numer((p->add(coeff(p, x, i)/i, i=1..n))(b(n$2))/(n-1)!):
seq(a(n), n=1..30); # Alois P. Heinz, Nov 21 2013
# second Maple program:
a:= n-> numer(add(abs(combinat[stirling1](n, i))/i, i=1..n)/(n-1)!):
seq(a(n), n=1..30); # Alois P. Heinz, Nov 23 2013
-
Table[Numerator[Total[Map[Total[#]!/Product[#[[i]],{i,1,Length[#]}]/Apply[Times,Table[Count[#,k]!,{k,1,Max[#]}]]/(Total[#]-1)!/Length[#]&,Partitions[n]]]],{n,1,25}]
A232248
Denominators of the expected length of a random cycle in a random permutation.
Original entry on oeis.org
1, 2, 12, 24, 720, 1440, 60480, 4480, 3628800, 1036800, 479001600, 958003200, 2615348736000, 172204032, 2414168064000, 62768369664000, 2462451425280000, 9146248151040000, 51090942171709440000, 136216903680000, 33720021833328230400000, 67440043666656460800000
Offset: 1
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j
*b(n-i*j, i-1) *x^j, j=0..n/i))))
end:
a:= n->denom((p->add(coeff(p, x, i)/i, i=1..n))(b(n$2))/(n-1)!):
seq(a(n), n=1..30); # Alois P. Heinz, Nov 21 2013
# second Maple program:
a:= n-> denom(add(abs(combinat[stirling1](n, i))/i, i=1..n)/(n-1)!):
seq(a(n), n=1..30); # Alois P. Heinz, Nov 23 2013
-
Table[Denominator[Total[Map[Total[#]!/Product[#[[i]],{i,1,Length[#]}]/Apply[Times,Table[Count[#,k]!,{k,1,Max[#]}]]/(Total[#]-1)!/Length[#]&,Partitions[n]]]],{n,1,25}]
A145176
Numerators of coefficients in series expansion of 1/(Bernoulli trial entropy).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 1, 1, 1, 41, 181, 1, 5, 1, 1, 109, 97, 41, 35, 1, 1, 1, 853, 551, 173, 107, 1, 7, 1, 1, 19, 13579, 1313, 307, 203, 7, 1, 1, 1, 1679, 251, 1081, 5969, 1681, 1169, 5, 3, 1, 1, 1537, 3169, 4913, 13583, 3481, 7819, 101, 11, 5, 1, 1, 18167
Offset: 1
-
f:= -x*log(x)-(1-x)*log(1-x):
S:= map(normal,eval(series(x*(1-ln(x))/f, x, 12),ln(x)=1-1/t)):
for n from 1 to 141 do
C:= coeff(S,x,n);
for k from 1 to n do T[n,k]:= numer(coeff(C,t,k));
od
od:
seq(seq(T[n,k],k=1..n),n=1..10); # Robert Israel, Jul 09 2015
-
ORDER:=14: expand(_invert(series(-x*ln(x)-(1-x)*ln(1-x), x=0)));
A145177
Denominators of rational coefficients in series expansion of 1/(Bernoulli trial entropy).
Original entry on oeis.org
2, 6, 4, 12, 6, 8, 20, 9, 8, 16, 30, 90, 48, 12, 32, 42, 720, 2160, 12, 96, 64, 56, 2520, 1440, 540, 576, 32, 128, 72, 25200, 10080, 2592, 1728, 24, 384, 256, 90, 700, 302400, 22680, 5184, 4320, 256, 96, 512, 110, 75600, 6720, 21600, 108864, 34560, 34560, 288
Offset: 1
-
f:= -x*log(x)-(1-x)*log(1-x):
S:= map(normal,eval(series(x*(1-ln(x))/f, x, 12),ln(x)=1-1/t)):
for n from 1 to 10 do
C:= coeff(S,x,n);
for k from 1 to n do T[n,k]:= denom(coeff(C,t,k)) od
od:
seq(seq(T[n,k],k=1..n),n=1..10); # Robert Israel, Jul 09 2015
-
ORDER:=14: expand(_invert(series(-x*ln(x)-(1-x)*ln(1-x), x=0)));
A165281
a(n) = (n+1)*(6*n^4 - 51*n^3 + 161*n^2 - 251*n + 251).
Original entry on oeis.org
251, 232, 243, 224, 475, 2376, 9107, 26368, 63099, 132200, 251251, 443232, 737243, 1169224, 1782675, 2629376, 3770107, 5275368, 7226099, 9714400, 12844251, 16732232, 21508243, 27316224, 34314875, 42678376, 52597107, 64278368, 77947099
Offset: 0
- P. Curtz, Integration numerique des systemes differentiels a conditions initiales, C.C.S.A., Arcueil, 1969.
-
[(n+1)*(6*n^4-51*n^3+161*n^2-251*n+251): n in [0..30]]; // Vincenzo Librandi, Aug 07 2011
-
Table[(n+1)(6n^4-51n^3+161n^2-251n+251),{n,0,30}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{251,232,243,224,475,2376},30] (* Harvey P. Dale, Aug 20 2014 *)
A249163
Triangle read by rows: the positive terms of A163626.
Original entry on oeis.org
1, 1, 1, 2, 1, 12, 1, 50, 24, 1, 180, 360, 1, 602, 3360, 720, 1, 1932, 25200, 20160, 1, 6050, 166824, 332640, 40320, 1, 18660, 1020600, 4233600, 1814400, 1, 57002, 5921520, 46070640, 46569600, 3628800, 1, 173052, 33105600, 451725120, 898128000, 239500800
Offset: 0
Cf.
A163626,
A000670,
A211374; also
A000012,
A000392,
A000481,
A000771,
A049447,
A028243,
A028246,
A091137,
A228909,
A163626,
A228911,
A228913 and Worpitzky numbers for the second Bernoulli numbers
A164555(n)/
A027642(n).
-
Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[Derivative[n][y][x], y[x]] // Rest; Table[ Select[row[n], Positive] , {n, 0, 12}] // Flatten
(* or, simply: *) Table[(-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 12}, {k, 0, n}] // Flatten // Select[#, Positive]& (* Jean-François Alcover, Dec 16 2014 *)
A368048
a(n) = lcm_{p in Partitions(n)} (Product_{t in p}(t + m)), where m = 2.
Original entry on oeis.org
1, 3, 36, 540, 6480, 136080, 8164800, 24494400, 293932800, 48498912000, 4073908608000, 158882435712000, 9532946142720000, 28598838428160000, 343186061137920000, 612587119131187200000, 7351045429574246400000, 419009589485732044800000, 276546329060583149568000000
Offset: 0
Let n = 4. The partitions of 4 are [(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)]. Thus a(4) = lcm([6, 5*3, 4*4, 4*3*3, 3*3*3*3]) = 6480.
A368116
A(m, n) = lcm_{p in Partitions(n)} (Product_{r in p}(r + m)). Array read by ascending antidiagonals, for m, n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 4, 36, 24, 12, 1, 5, 80, 540, 720, 60, 1, 6, 150, 960, 6480, 1440, 360, 1, 7, 252, 5250, 134400, 136080, 60480, 2520, 1, 8, 392, 1512, 315000, 537600, 8164800, 120960, 5040, 1, 9, 576, 24696, 63504, 1575000, 32256000, 24494400, 3628800, 15120
Offset: 0
Array A(m, n) begins:
[0] 1, 1, 2, 6, 12, 60, 360, ... A048803
[1] 1, 2, 12, 24, 720, 1440, 60480, ... A091137
[2] 1, 3, 36, 540, 6480, 136080, 8164800, ... A368048
[3] 1, 4, 80, 960, 134400, 537600, 32256000, ...
[4] 1, 5, 150, 5250, 315000, 1575000, 330750000, ...
[5] 1, 6, 252, 1512, 63504, 1905120, 880165440, ...
[6] 1, 7, 392, 24696, 6914880, 532445760, 268352663040, ...
[7] 1, 8, 576, 23040, 18247680, 145981440, 683193139200, ...
[8] 1, 9, 810, 80190, 7217100, 844400700, 5851696851000, ...
.
Let m = 2 and n = 4. The partitions of 4 are [(4), (3,1), (2,2), (2,1,1), (1, 1, 1, 1)]. Thus A(2, 4) = lcm([6, 5*3, 4*4, 4*3*3, 3*3*3*3]) = 6480.
Original entry on oeis.org
1, 6, 1, 60, 1, 42, 1, 120, 1, 66, 1, 5460, 1, 6, 1, 4080, 1, 798, 1, 660, 1, 138, 1, 10920, 1, 6, 1, 1740, 1, 14322, 1, 8160, 1, 6, 1, 3838380, 1, 6, 1, 54120, 1, 1806, 1, 1380, 1, 282, 1, 371280, 1, 66, 1, 3180, 1, 798, 1, 3480, 1, 354, 1, 113573460, 1, 6, 1, 16320, 1, 64722, 1, 60, 1, 4686, 1, 560403480, 1, 6
Offset: 0
A363596
a(n) = (Product_{k=1..pi(n+1)} prime(k)^floor(n/(prime(k)-1) ) )/(n+1)!.
Original entry on oeis.org
1, 1, 2, 1, 6, 2, 12, 3, 10, 2, 12, 2, 420, 60, 24, 3, 90, 10, 420, 42, 660, 60, 360, 30, 3276, 252, 56, 4, 120, 8, 3696, 231, 3570, 210, 36, 2, 103740, 5460, 840, 42, 13860, 660, 27720, 1260, 19320, 840, 5040, 210, 198900, 7956, 10296, 396, 11880, 440, 6384, 228
Offset: 0
The table below relates b(n) = A091137(n) to a(n), with (n+1)!*a(n) = k!*m = b(n), where k! is the largest factorial that divides b(n).
n A067255(b(n)) (n+1)!*a(n) k! * m
---------------------------------------
0 0 1! * 1 1! * 1
1 1 2! * 1 2! * 1
2 2.1 3! * 2 3! * 2
3 3.1 4! * 1 4! * 1
4 4.2.1 5! * 6 6! * 1
5 5.2.1 6! * 2 6! * 2
6 6.3.1.1 7! * 12 7! * 12
7 7.3.1.1 8! * 3 8! * 3
8 8.4.2.1 9! * 10 10! * 1
9 9.4.2.1 10! * 2 10! * 2
10 10.5.2.1.1 11! * 12 12! * 1
11 11.5.2.1.1 12! * 2 12! * 2
12 12.6.3.2.1.1 13! * 420 15! * 2
13 13.6.3.2.1.1 14! * 60 15! * 4
14 14.7.3.2.1.1 15! * 24 15! * 24
15 15.7.3.2.1.1 16! * 3 16! * 3
16 16.8.4.2.1.1.1 17! * 90 18! * 5
...
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Abdelmalek Bedhouche and Bakir Farhi, On some products taken over the prime numbers, arXiv:2207.07957 [math.NT], 2022. See p. 10.
- Michael De Vlieger, Log log scatterplot of a(n+1), n = 0..10^4.
- Michael De Vlieger, Plot p(k)^e(k) | a(n) at (x, y) = (n, k), n = 0..2^11, with a color function representing e(k), where black = 1, red = 2, and the largest exponent in the dataset shown in magenta. The bar at bottom shows the number 1 in black, primes in red, composite prime powers in gold, squarefree terms in green, and terms that are neither squarefree nor prime powers in blue.
-
Table[j = 1; ( Times @@ Reap[While[Sow[#^Floor[n/(# - 1)]] &[Prime[j]] > 1, j++]][[-1, 1]] )/Factorial[n + 1], {n, 0, 60}]
-
from math import prod, factorial
from sympy import sieve
def A363596(n: int) -> int:
numer = prod(p ** (n // (p - 1)) for p in sieve.primerange(2, n + 2))
return numer // factorial(n + 1)
print([A363596(n) for n in range(56)]) # Peter Luschny, Aug 17 2025
Comments