cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A105290 Numbers k such that prime(k+1) == 4 (mod k).

Original entry on oeis.org

1, 3, 11, 13, 69, 71, 637225, 637253, 637313, 637327, 4124459, 4124685, 27067033, 179993017, 179993023, 1208198853, 8179002097, 8179002109, 55762149091
Offset: 1

Views

Author

Zak Seidov, Apr 25 2005

Keywords

Comments

Integers k such that A004649(k+1) = 4. - Michel Marcus, Dec 30 2022

Crossrefs

Programs

  • PARI
    my(n=0, p=2); while(n++, (-4+p=nextprime(p+1))%n || print1(n, ", ")) \\ M. F. Hasler, Feb 05 2009

Extensions

Missing first two terms inserted by M. F. Hasler, Feb 04 2009
a(11)-a(13) from M. F. Hasler, Feb 05 2009
a(14)-a(15) from Sean A. Irvine, Nov 25 2010
a(16) from D. S. McNeil, Nov 25 2010
a(17)-a(19) from Charles R Greathouse IV, May 05 2011

A156149 Primes p such that prime(p)+2 = 0 (mod p), where prime(p)=A000040(p) is the p-th prime.

Original entry on oeis.org

11, 71, 637319, 637327
Offset: 1

Views

Author

M. F. Hasler, Feb 04 2009

Keywords

Comments

The subsequence of primes in A092044.

Crossrefs

Cf. A156154.

Programs

  • PARI
    p=c=0; until(0, until( isprime(c++), p=nextprime(p+1)); (p+2)%c & next; print1( c","))

Formula

a(n) = A000720(A156150(n)) = A000040(A156148(n))

A156151 Primes p such that p+2 = 0 (mod pi(p)), where pi(p)=A000720(p) is the prime counting function.

Original entry on oeis.org

2, 31, 353, 9559783, 9559843, 9559903, 3779853313, 27788573801, 204475054073, 204475054723, 1505578024807, 1505578025779, 241849345578351691, 1784546064357413809, 1784546064357419959, 97199410027249994623, 97199410027250046643, 97199410027250047453, 97199410027250123143
Offset: 1

Views

Author

M. F. Hasler, Feb 04 2009

Keywords

Crossrefs

Cf. A156152.

Programs

  • PARI
    p=c=0; until(0, (2+p=nextprime(p+1))%c++ || print1(p",")) \\ PARI syntax for || updated Feb 20 2020

Formula

a(n) = A000040(A092044(n)).

Extensions

More terms from Max Alekseyev, May 03 2009
a(13)-a(19) from Giovanni Resta, Feb 23 2020

A260989 Integers n such that prime(n-1) + prime(n+1) is a multiple of n.

Original entry on oeis.org

4, 5, 8, 11, 12, 18, 20, 70, 72, 1053, 4116, 6459, 6460, 40083, 63328, 251742, 399924, 637320, 637322, 637330, 2582288, 2582436, 2582488, 10553828, 16899042, 69709721, 179992913, 179992922, 465769813, 749973302, 749973314, 1208198617, 1208198629
Offset: 1

Views

Author

Zak Seidov, Aug 06 2015

Keywords

Examples

			n=4: prime(n-1) + prime(n+1) = 5 + 11 = 16 = 4*n,
n=20: 67 + 73 = 140 = 7*n,
n=16899042: 312632263 + 312632291 = 625264554 = 37*n,
n=69709721: 1394194387 + 1394194453 = 2788388840 = 40*n.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..7*10^3], k in [2..7*10^3] | (NthPrime(n-1) + NthPrime(n+1)) eq n*k]; // Vincenzo Librandi, Aug 07 2015
  • Mathematica
    Select[Range[2, 100000], Mod[Prime[# - 1] + Prime[# + 1], #] == 0 &] (* Michael De Vlieger, Aug 07 2015 *)
  • PARI
    a=2;b=5;for(n=2,10^8,c=a+b;if(c%n<1,print1(n", "));a=nextprime(a+1);b=nextprime(b+1))
    
  • PARI
    p=2;q=3;n=1; forprime(r=5,1e9, if((p+r)%n++==0, print1(n", "));p=q;q=r) \\ Charles R Greathouse IV, Aug 10 2015
    

Extensions

a(27)-a(33) from Charles R Greathouse IV, Aug 10 2015

A379014 Least number k such that prime(n) + prime(k) is a multiple of n, or -1 if no such number exists.

Original entry on oeis.org

1, 2, 4, 3, 8, 3, 5, 3, 6, 5, 1, 5, 5, 6, 6, 5, 14, 5, 15, 10, 5, 11, 26, 4, 2, 2, 3, 3, 4, 4, 17, 10, 18, 11, 18, 10, 34, 27, 19, 19, 19, 10, 19, 20, 21, 11, 20, 7, 19, 20, 21, 21, 111, 8, 21, 7, 21, 8, 65, 8, 23, 7, 20, 21, 68, 6, 20, 2, 19, 20, 1, 21, 20, 20
Offset: 1

Views

Author

Jean-Marc Rebert, Dec 13 2024

Keywords

Comments

Indices n where a(n)=1 correspond with terms of A092044. - Bill McEachen, Dec 21 2024

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{k=1},While[!Divisible[Prime[n]+Prime[k],n], k++]; k]; Array[a,74] (* Stefano Spezia, Dec 13 2024 *)
  • PARI
    a(n) = my(k=1, p=prime(n)); while ((p+prime(k)) % n, k++); k; \\ Michel Marcus, Dec 13 2024

Formula

a(n) = A000720(A294639(n)). - Pontus von Brömssen, Dec 13 2024
Previous Showing 11-15 of 15 results.