cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A193815 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = x^n + x^(n-1) + ... + x+1 and q(n,x)=(x+1)^n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 4, 6, 3, 1, 5, 10, 10, 4, 1, 6, 15, 20, 15, 5, 1, 7, 21, 35, 35, 21, 6, 1, 8, 28, 56, 70, 56, 28, 7, 1, 9, 36, 84, 126, 126, 84, 36, 8, 1, 10, 45, 120, 210, 252, 210, 120, 45, 9, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 10, 1, 12, 66, 220, 495
Offset: 0

Views

Author

Clark Kimberling, Aug 06 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
Triangle T(n,k), read by rows, given by (1,0,-1,1,0,0,0,0,0,0,0,...) DELTA (1,1,-1,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 08 2011
Row sums are A095121. - Philippe Deléham, Nov 24 2011

Examples

			First six rows:
  1;
  1,  1;
  1,  3,  2;
  1,  4,  6,  3;
  1,  5, 10, 10,  4;
  1,  6, 15, 20, 15,  5;
		

Crossrefs

Programs

  • Mathematica
    z = 10; c = 1; d = 1;
    p[0, x_] := 1
    p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0;
    q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193815 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]   (* A153861 *)
    t[0, 0] = t[1, 0] = t[1, 1] = t[2, 0] = 1; t[2, 1] = 3; t[2, 2] = 2; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = t[n-1, k]+2*t[n-1, k-1]-t[n-2, k-1]-t[n-2, k-2]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 16 2013, after Philippe Deléham *)

Formula

T(n,k) = A153861(n,n-k). - Philippe Deléham, Oct 08 2011
G.f.: (1-y*x+y*(y+1)*x^2)/((1-y*x)*(1-(y+1)*x)). - Philippe Deléham, Nov 24 2011
Sum_{k=0..n} T(n,k)*x^k = (x+1)*((x+1)^n - x^n) + 0^n. - Philippe Deléham, Nov 24 2011
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(0,0)=T(1,0)=T(1,1)=T(2,0)=1, T(2,1)=3, T(2,2)=2, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Dec 15 2013

A002783 a(n) = 2*(3^n - 2^n) + 1.

Original entry on oeis.org

1, 3, 11, 39, 131, 423, 1331, 4119, 12611, 38343, 116051, 350199, 1054691, 3172263, 9533171, 28632279, 85962371, 258018183, 774316691, 2323474359, 6971471651, 20916512103, 62753730611, 188269580439, 564825518531, 1694510110023, 5083597438931, 15250926534519
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A095121. - R. J. Mathar, Oct 05 2012
Create a triangle having its left and right border both equal to the n-th row of Pascal's triangle, and internal terms m(i,j) = m(i-1,j-1) + m(i-1,j). Then the sum of all elements equals a(n). - J. M. Bergot, Oct 07 2012, edited by M. F. Hasler, Oct 10 2012
First differences of A090326 (with offset 1). - Wesley Ivan Hurt, Jul 08 2014

Examples

			From _J. M. Bergot_ and _M. F. Hasler_, Oct 10 2012: (Start)
For n=3, the triangle with left and right border (1,3,3,1) and internal terms m(i,j) = m(i-1,j-1) + m(i-1,j) is
     1
    3 3
   3 6 3
  1 9 9 1
and the sum of all the elements is 39 = a(3). (End)
		

References

  • H. Gupta, On a problem in parity, Indian J. Math., 11 (1969), 157-163.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: ( -1+3*x-4*x^2 ) / ( (x-1)*(3*x-1)*(2*x-1) ). - Simon Plouffe in his 1992 dissertation
a(n+1) - a(n) = 2*A027649(n). - R. J. Mathar, Oct 05 2012
E.g.f.: exp(x)*(1 - 2*exp(x) + 2*exp(2*x)). - Stefano Spezia, May 18 2024

Extensions

More terms from Wesley Ivan Hurt, Jul 08 2014

A134067 Row sums of triangle A134066.

Original entry on oeis.org

1, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590, 17179869182
Offset: 0

Views

Author

Gary W. Adamson, Oct 06 2007

Keywords

Comments

Essentially the same as A095121. - R. J. Mathar, Mar 28 2012

Examples

			a(3) = 30 = sum of row 3 terms of triangle A134066: (2 + 12 + 12 + 4).
a(3) = 30 = (1, 3, 3, 1) dot (1, 5, 3, 5) = (1 + 15 + 9 + 5).
		

Crossrefs

Programs

Formula

Binomial transform of (1, 5, 3, 5, 3, 5, ...).
From Colin Barker, Mar 13 2014: (Start)
a(n) = 2^(2+n) - 2 for n > 0.
a(n) = 3*a(n-1) - 2*a(n-2) for n > 0.
G.f.: -(2*x^2-3*x-1) / ((x-1)*(2*x-1)). (End)
E.g.f.: 2*exp(x)*(2*exp(x) - 1) - 1. - Stefano Spezia, May 07 2023

A153861 Triangle read by rows, binomial transform of triangle A153860.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 10, 10, 5, 1, 5, 15, 20, 15, 6, 1, 6, 21, 35, 35, 21, 7, 1, 7, 28, 56, 70, 56, 28, 8, 1, 8, 36, 84, 126, 126, 84, 36, 9, 1, 9, 45, 120, 210, 252, 210, 120, 45, 10, 1, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Gary W. Adamson, Jan 03 2009

Keywords

Comments

Row sums = A095121: (1, 2, 6, 14, 30, 62, 126,...).
Triangle T(n,k), 0<=k<=n, read by rows, given by [1,1,-1,1,0,0,0,0,0,0,0,...] DELTA [1,0,-1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 03 2009
A123110*A007318 as infinite lower triangular matrices. - Philippe Deléham, Jan 06 2009
A153861 is the fusion of polynomial sequences p(n,x)=x^n+x^(n-1)+...+x+1 and q(n,x)=(x+1)^n; see A193722 for the definition of fusion. - Clark Kimberling, Aug 06 2011

Examples

			First few rows of the triangle are:
1;
1, 1;
2, 3, 1;
3, 6, 4, 1;
4, 10, 10, 5, 1;
5, 15, 20, 15, 6, 1;
6, 21, 35, 35, 21, 7, 1;
7, 28, 56, 70, 56, 28, 8, 1;
8, 36, 84, 126, 126, 84, 36, 9, 1;
9, 45, 120, 210, 252, 210, 120, 45, 10, 1;
...
		

Crossrefs

This is A137396 without the initial column and without signs.

Programs

  • Mathematica
    z = 10; c = 1; d = 1;
    p[0, x_] := 1
    p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0;
    q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193815 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]   (* A153861 *)
    (* Clark Kimberling, Aug 06 2011 *)

Formula

Triangle read by rows, A007318 * A153860. Remove left two columns of Pascal's triangle and append (1, 1, 2, 3, 4, 5,...).
As a recursive operation by way of example, row 3 = (3, 6, 4, 1) =
[1, 1, 1, 0] * (flipped Pascal's triangle matrix) = [1, 3, 3, 1]
[1, 2, 1, 0]
[1, 1, 0, 0]
[1, 0, 0, 0].
(Cf. analogous operation in A130405, but in A153861 the linear multiplier = [1,1,1,...,0].)
T(n,k) = 2*T(n-1,k)+T(n-1,k-1)-T(n-2,k)-T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0)=2, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 15 2013
G.f.: (1-x+x^2+x^2*y)/((x-1)*(-1+x+x*y)). - R. J. Mathar, Aug 11 2015

A154251 Expansion of (1-x+7x^2)/((1-x)(1-2x)).

Original entry on oeis.org

1, 2, 11, 29, 65, 137, 281, 569, 1145, 2297, 4601, 9209, 18425, 36857, 73721, 147449, 294905, 589817, 1179641, 2359289, 4718585, 9437177, 18874361, 37748729, 75497465, 150994937, 301989881, 603979769, 1207959545, 2415919097
Offset: 0

Views

Author

Philippe Deléham, Jan 05 2009

Keywords

Comments

Binomial transform of 1,1,8,1,8,1,8,1,8,1,8,1,8,1,8,...

Crossrefs

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{3,-2},{2,11}, 25]] (* or *) Join[{1},Table[9*2^(n-1) - 7, {n,1,25}]] (* G. C. Greubel, Sep 08 2016 *)
  • PARI
    Vec((1-x+7*x^2)/((1-x)*(1-2*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = 3*a(n-1) - 2*a(n-2), n>2, with a(0)=1, a(1)=2, a(2)=11.
a(n) = 9*2^(n-1) - 7, n>0, with a(0)=1.
a(n) = 2*a(n-1) + 7, n>1, with a(0)=1, a(1)=2.
From G. C. Greubel, Sep 08 2016: (Start)
a(n) = 9*2^(n-1) - 7 for n >= 1.
E.g.f.: (1/2)*(9*exp(2*x) - 14*exp(x) + 7). (End)

A131108 T(n,k) = 2*A007318(n,k) - A097806(n,k).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 2, 6, 5, 1, 2, 8, 12, 7, 1, 2, 10, 20, 20, 9, 1, 2, 12, 30, 40, 30, 11, 1, 2, 14, 42, 70, 70, 42, 13, 1, 2, 16, 56, 112, 140, 112, 56, 15, 1, 2, 18, 72, 168, 252, 252, 168, 72, 17, 1, 2, 20, 90, 240, 420, 504, 420, 240, 90, 19, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 15 2007

Keywords

Comments

Row sums give A095121.
Triangle T(n,k), 0 <= k <= n, read by rows given by [1, 1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1,0,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 18 2007

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  2,  3,  1;
  2,  6,  5,  1;
  2,  8, 12,  7, 1;
  2, 10, 20, 20, 9, 1;
...
		

Crossrefs

Programs

  • Magma
    function T(n,k)
      if k eq n-1 then return 2*n-1;
      elif k eq n then return 1;
      else return 2*Binomial(n,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    seq(seq( `if`(k=n-1, 2*n-1, `if`(k=n, 1, 2*binomial(n,k))), k=0..n), n=0..12); # G. C. Greubel, Nov 18 2019
  • Mathematica
    Table[If[k==n-1, 2*n-1, If[k==n, 1, 2*Binomial[n, k]]], {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
  • PARI
    T(n,k) = if(k==n-1, 2*n-1, if(k==n, 1, 2*binomial(n,k))); \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==n-1): return 2*n-1
        elif (k==n): return 1
        else: return 2*binomial(n,k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019

Formula

Twice Pascal's triangle minus A097806, the pairwise operator.
G.f.: (1-x*y+x^2+x^2*y)/((-1+x+x*y)*(x*y-1)). - R. J. Mathar, Aug 11 2015

Extensions

Corrected by Philippe Deléham, Dec 17 2007
More terms added and data corrected by G. C. Greubel, Nov 18 2019

A154252 Expansion of (1-x+8x^2)/((1-x)(1-2x)) .

Original entry on oeis.org

1, 2, 12, 32, 72, 152, 312, 632, 1272, 2552, 5112, 10232, 20472, 40952, 81912, 163832, 327672, 655352, 1310712, 2621432, 5242872, 10485752, 20971512, 41943032, 83886072, 167772152, 335544312, 671088632, 1342177272, 2684354552, 5368709112, 10737418232
Offset: 0

Views

Author

Philippe Deléham, Jan 05 2009

Keywords

Comments

Binomial transform of 1,1,9,1,9,1,9,1,9,1,9,1,9,1,9,...

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 2*a(n-2), n>2, with a(0)=1, a(1)=2, a(2)=12.
a(n) = 2*a(n-1) + 8, n>1, with a(0)=1, a(1)=2.
a(n) = 10*2^(n-1) - 8, n>=1, with a(0)=1.
E.g.f.: 5*exp(2*x) - 8*exp(x) + 4. - G. C. Greubel, Sep 08 2016

Extensions

Two terms corrected by Johannes W. Meijer, May 26 2011

A131129 3*A007318 - 2*A097806, where A007318 = Pascal's triangle and A097806 = the pairwise operator.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 3, 9, 7, 1, 3, 12, 18, 10, 1, 3, 15, 30, 30, 13, 1, 3, 18, 45, 60, 45, 16, 1, 3, 21, 63, 105, 105, 63, 19, 1, 3, 24, 84, 168, 210, 168, 84, 22, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 16 2007

Keywords

Comments

Row sums = A131128: (1, 2, 8, 20, 44, 92, 188, 380, ...), the binomial transform of (1, 1, 5, 1, 5, 1, 5, ...). Triangle A131108 has row sums (1, 2, 6, 14, 30, 62, ...), the binomial transform of (1, 1, 3, 1, 3, 1, ...). Generalization: Given triangles generated from N*A007318 - (N-1)*A097806, row sums are binomial transforms of (1, 1, (2N-1), 1, (2N-1), 1, ...).
Triangle T(n,k), 0 <= k <= n, read by rows given by [1,2,-3,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 18 2007

Examples

			First few rows of the triangle:
  1;
  1,  1;
  3,  4,  1;
  3,  9,  7,  1;
  3, 12, 18, 10,  1;
  3, 15, 30, 30, 13,  1;
  ...
		

Crossrefs

Formula

G.f.: (1-x*y+2*x^2+2*x^2*y)/((-1+x+x*y)*(x*y-1)). - R. J. Mathar, Aug 12 2015

A296965 Expansion of x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)).

Original entry on oeis.org

0, 1, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590, 17179869182
Offset: 0

Views

Author

J. Devillet, Dec 22 2017

Keywords

Comments

a(n) = A000225(n)-1, a(0)=0, a(1)=1. Number of quasilinear weak orderings R on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1<...
Essentially the same as A095121 and A000918. - R. J. Mathar, Jan 02 2018

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 - x + 2 x^2)/((1 - x) (1 - 2 x)), {x, 0, 33}], x] (* or *)
    LinearRecurrence[{3, -2}, {0, 1, 2, 6}, 34] (* Michael De Vlieger, Dec 22 2017 *)
  • PARI
    concat(0, Vec(x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Dec 22 2017

Formula

From Colin Barker, Dec 22 2017: (Start)
G.f.: x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)).
a(n) = 2^n - 2 for n>1.
a(n) = 3*a(n-1) - 2*a(n-2) for n>3. (End)
a(n) = A134067(n-2) for n >= 3. - Georg Fischer, Oct 30 2018
E.g.f.: 1 + exp(x)*(exp(x) - 2) + x. - Stefano Spezia, May 07 2023

A307457 Longest path length in the n-Apollonian network.

Original entry on oeis.org

3, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590
Offset: 1

Author

Eric W. Weisstein, Apr 08 2019

Keywords

Crossrefs

Essentially the same as A000918 shifted, and A095121.
Cf. A307549.

Formula

a(n) = 2^(n+1) - 2 = A000918(n+1) for n > 1. - Andrew Howroyd, Jun 09 2025

Extensions

a(5) onwards from Andrew Howroyd, Jun 09 2025
Previous Showing 11-20 of 27 results. Next