cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 93 results. Next

A271410 LCM of exponents in binary expansion of 2n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 6, 4, 4, 4, 4, 12, 12, 12, 12, 5, 5, 10, 10, 15, 15, 30, 30, 20, 20, 20, 20, 60, 60, 60, 60, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 30, 30, 30, 30, 30, 30, 30, 30, 60, 60, 60, 60, 60, 60, 60, 60, 7, 7, 14, 14, 21, 21, 42
Offset: 0

Views

Author

Peter Kagey, Apr 11 2016

Keywords

Examples

			a(2) = lcm(2) = 2 because 2*2 = 2^2;
a(3) = lcm(1, 2) = 2 because 2*3 = 2^1 + 2^2;
a(7) = lcm(1, 2, 3) = 6 because 2*7 = 2^3 + 2^2 + 2^1.
		

Crossrefs

Programs

  • Mathematica
    lcm[n_]:=Module[{idn2=IntegerDigits[n,2]},LCM@@Pick[Reverse[Range[ Length[ idn2]]], idn2,1]]; Join[{1},Array[lcm,100]] (* Harvey P. Dale, Jan 24 2019 *)
  • PARI
    a(n) = my(ve = select(x->x==1, Vecrev(binary(2*n)), 1)); lcm(vector(#ve, k, ve[k]-1)); \\ Michel Marcus, Apr 12 2016
    
  • PARI
    a(n)=lcm(Vec(select(x->x, Vecrev(binary(n)), 1))) \\ Charles R Greathouse IV, Apr 12 2016
    
  • Python
    from math import lcm
    def A271410(n): return lcm(*(i for i, b in enumerate(bin(n)[:1:-1],1) if b == '1')) # Chai Wah Wu, Dec 12 2022

A367917 BII-numbers of set-systems with the same number of edges as covered vertices.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152
Offset: 1

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.

Examples

			The terms together with the corresponding set-systems begin:
   0: {}
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  17: {{1},{1,3}}
  19: {{1},{2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  24: {{3},{1,3}}
  26: {{2},{3},{1,3}}
  28: {{1,2},{3},{1,3}}
  34: {{2},{2,3}}
  35: {{1},{2},{2,3}}
  37: {{1},{1,2},{2,3}}
		

Crossrefs

These set-systems are counted by A054780 and A367916, A368186.
Graphs of this type are A367862, covering A367863, unlabeled A006649.
A003465 counts set-systems covering {1..n}, unlabeled A055621.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, connected A323818, unlabeled A000612.
A070939 gives length of binary expansion.
A136556 counts set-systems on {1..n} with n edges.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
    Select[Range[0,100], Length[bpe[#]]==Length[Union@@bpe/@bpe[#]]&]

A370639 Number of subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

0, 1, 2, 3, 7, 10, 15, 22, 61, 81, 112, 154, 207, 276, 355, 464, 1771, 2166, 2724, 3445, 4246, 5292, 6420, 7922, 9586, 11667, 13768, 16606, 19095, 22825, 26498, 31421, 187223, 213684, 247670, 289181, 331301, 385079, 440411, 510124, 575266, 662625, 747521
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(6) = 15 subsets:
  .  {1}  {2}    {3}    {4}      {5}      {6}
          {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
                 {2,3}  {2,4}    {2,5}    {2,6}
                        {3,4}    {3,5}    {3,6}
                        {1,2,4}  {4,5}    {4,6}
                        {1,3,4}  {1,2,5}  {5,6}
                        {2,3,4}  {1,3,5}  {1,2,6}
                                 {2,3,5}  {1,3,6}
                                 {2,4,5}  {1,4,6}
                                 {3,4,5}  {1,5,6}
                                          {2,3,6}
                                          {2,5,6}
                                          {3,4,6}
                                          {3,5,6}
                                          {4,5,6}
		

Crossrefs

Simple graphs of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems of this type are counted by A367902, ranks A367906.
Set systems not of this type are counted by A367903, ranks A367907.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
Factorizations of this type are A368414/A370814, complement A368413/A370813.
For prime instead of binary indices we have A370586, differences of A370582.
The complement for prime indices is A370587, differences of A370583.
The complement is counted by A370589, differences of A370637.
Partial sums are A370636.
The complement has partial sums A370637/A370643, minima A370642/A370644.
The case of a unique choice is A370641, differences of A370638.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]

Formula

First differences of A370636.

Extensions

a(19)-a(42) from Alois P. Heinz, Mar 09 2024

A335404 Numbers k such that the k-th composition in standard order (A066099) has the same product as sum.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 32, 37, 38, 41, 44, 50, 52, 64, 128, 139, 141, 142, 163, 171, 173, 174, 177, 181, 182, 184, 186, 197, 198, 209, 213, 214, 216, 218, 226, 232, 234, 256, 295, 307, 313, 316, 403, 409, 412, 457, 460, 484, 512, 535, 539, 541, 542, 647, 707, 737
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    1: (1)
    2: (2)
    4: (3)
    8: (4)
   10: (2,2)
   16: (5)
   32: (6)
   37: (3,2,1)
   38: (3,1,2)
   41: (2,3,1)
   44: (2,1,3)
   50: (1,3,2)
   52: (1,2,3)
   64: (7)
  128: (8)
  139: (4,2,1,1)
  141: (4,1,2,1)
  142: (4,1,1,2)
  163: (2,4,1,1)
  171: (2,2,2,1,1)
		

Crossrefs

The lengths of standard compositions are given by A000120.
Sum of binary indices is A029931.
Sum of prime indices is A056239.
Sum of standard compositions is A070939.
Product of standard compositions is A124758.
Taking GCD instead of product gives A131577.
The version for prime indices is A301987.
The version for prime indices of nonprime numbers is A301988.
These compositions are counted by A335405.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],Times@@stc[#]==Plus@@stc[#]&]

Formula

A124758(a(n)) = A070939(a(n)).

A357135 Take the k-th composition in standard order for each part k of the n-th composition in standard order; then concatenate.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Triangle begins:
   0:
   1: 1
   2: 2
   3: 1 1
   4: 1 1
   5: 2 1
   6: 1 2
   7: 1 1 1
   8: 3
   9: 1 1 1
  10: 2 2
  11: 2 1 1
  12: 1 1 1
  13: 1 2 1
  14: 1 1 2
  15: 1 1 1 1
		

Crossrefs

See link for sequences related to standard compositions.
Row n is the A357134(n)-th composition in standard order.
The version for Heinz numbers of partitions is A357139, cf. A003963.
Row sums are A357186, differences A357187.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Join@@Table[Join@@stc/@stc[n],{n,0,30}]

Formula

Row n is the A357134(n)-th composition in standard order.

A367913 Least number k such that there are exactly n ways to choose a multiset consisting of a binary index of each binary index of k.

Original entry on oeis.org

1, 4, 64, 20, 68, 320, 52, 84, 16448, 324, 832, 116, 1104, 308, 816, 340, 836, 848, 1108, 1136, 1360, 3152, 16708, 372, 5188, 5216, 852, 880, 2884, 1364, 13376, 1392, 3184, 3424, 17220, 5204, 5220, 2868, 5728, 884, 19536, 66896, 2900, 1396, 21572, 3188, 3412
Offset: 1

Views

Author

Gus Wiseman, Dec 16 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
      1: {{1}}
      4: {{1,2}}
     64: {{1,2,3}}
     20: {{1,2},{1,3}}
     68: {{1,2},{1,2,3}}
    320: {{1,2,3},{1,4}}
     52: {{1,2},{1,3},{2,3}}
     84: {{1,2},{1,3},{1,2,3}}
  16448: {{1,2,3},{1,2,3,4}}
    324: {{1,2},{1,2,3},{1,4}}
    832: {{1,2,3},{1,4},{2,4}}
    116: {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

A version for multisets and divisors is A355734.
With distinctness we have A367910, firsts of A367905, sorted A367911.
Positions of first appearances in A367912.
The sorted version is A367915.
For sequences we have A368111, firsts of A368109, sorted A368112.
For sets we have A368184, firsts of A368183, sorted A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]],{n,1000}];
    Table[Position[c,n][[1,1]],{n,spnm[c]}]

A367915 Sorted positions of first appearances in A367912 (number of multisets that can be obtained by choosing a binary index of each binary index).

Original entry on oeis.org

1, 4, 20, 52, 64, 68, 84, 116, 308, 320, 324, 340, 372, 816, 832, 836, 848, 852, 880, 884, 1104, 1108, 1136, 1360, 1364, 1392, 1396, 1904, 1908, 2868, 2884, 2900, 2932, 3152, 3184, 3188, 3412, 3424, 3440, 3444, 3952, 3956, 5188, 5204, 5216, 5220, 5236, 5476
Offset: 1

Views

Author

Gus Wiseman, Dec 16 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
     1: {{1}}
     4: {{1,2}}
    20: {{1,2},{1,3}}
    52: {{1,2},{1,3},{2,3}}
    64: {{1,2,3}}
    68: {{1,2},{1,2,3}}
    84: {{1,2},{1,3},{1,2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
   308: {{1,2},{1,3},{2,3},{1,4}}
   320: {{1,2,3},{1,4}}
   324: {{1,2},{1,2,3},{1,4}}
   340: {{1,2},{1,3},{1,2,3},{1,4}}
   372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
		

Crossrefs

A version for multisets and divisors is A355734.
Sorted positions of first appearances in A367912, for sequences A368109.
The unsorted version is A367913.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]],{n,10000}];
    Select[Range[Length[c]],FreeQ[Take[c,#-1],c[[#]]]&]

A370589 Number of subsets of {1..n} containing n such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 1, 6, 17, 42, 67, 175, 400, 870, 1841, 3820, 7837, 15920, 30997, 63370, 128348, 258699, 520042, 1043284, 2090732, 4186382, 8379022, 16765549, 33540664, 67092258, 134198633, 268412631, 536844414, 1073710403, 2147296425, 4294753612, 8589686922, 17179580003
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of {1,4,5} are {{1},{3},{1,3}}, from which it is not possible to choose three different elements, so S is counted under a(3).
The binary indices of S = {1,6,8,9} are {{1},{2,3},{4},{1,4}}, from which it is not possible to choose four different elements, so S is counted under a(9).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,2,3,4}  {1,4,5}      {2,4,6}
                               {1,2,3,5}    {1,2,3,6}
                               {1,2,4,5}    {1,2,4,6}
                               {1,3,4,5}    {1,2,5,6}
                               {2,3,4,5}    {1,3,4,6}
                               {1,2,3,4,5}  {1,3,5,6}
                                            {1,4,5,6}
                                            {2,3,4,6}
                                            {2,3,5,6}
                                            {2,4,5,6}
                                            {3,4,5,6}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Simple graphs of this type are counted by A367867, covering A367868.
Set systems not of this type are counted by A367902, ranks A367906.
Set systems of this type are counted by A367903, ranks A367907.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A version for MM-numbers of multisets is A355529, complement A368100.
Factorizations are counted by A368413/A370813, complement A368414/A370814.
The complement for prime indices is A370586, differences of A370582.
For prime indices we have A370587, differences of A370583.
Partial sums are A370637/A370643, minima A370642/A370644.
The complement is counted by A370639, partial sums A370636.
The version for a unique choice is A370641, partial sums A370638.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Extensions

a(19)-a(35) from Alois P. Heinz, Mar 09 2024

A372688 Number of integer partitions y of n whose rank Sum_i 2^(y_i-1) is prime.

Original entry on oeis.org

0, 0, 2, 2, 1, 3, 3, 6, 3, 6, 9, 20, 13, 22, 22, 45, 47, 70, 75, 100, 107, 132, 157, 202, 229, 302, 396, 495, 536, 699, 820, 962, 1193, 1507, 1699, 2064, 2455, 2945, 3408, 4026, 4691, 5749, 6670, 7614, 9127, 10930, 12329, 14370, 16955, 19961, 22950, 26574, 30941
Offset: 0

Views

Author

Gus Wiseman, May 16 2024

Keywords

Comments

Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices).

Examples

			The partition (3,2,1) has rank 2^(3-1) + 2^(2-1) + 2^(1-1) = 7, which is prime, so (3,2,1) is counted under a(6).
The a(2) = 2 through a(10) = 9 partitions:
(2)   (21)   (31)  (221)    (51)    (421)      (431)   (441)     (91)
(11)  (111)        (2111)   (321)   (2221)     (521)   (3321)    (631)
                   (11111)  (3111)  (4111)     (5111)  (4221)    (721)
                                    (22111)            (33111)   (3331)
                                    (211111)           (42111)   (7111)
                                    (1111111)          (411111)  (32221)
                                                                 (322111)
                                                                 (3211111)
                                                                 (31111111)
		

Crossrefs

For all positive integers (not just prime) we get A000041.
For even instead of prime we have A087787, strict A025147, odd A096765.
These partitions have Heinz numbers A277319.
The strict case is A372687, ranks A372851.
The version counting only distinct parts is A372887, ranks A372850.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A048793 and A272020 (reverse) list binary indices:
- length A000120
- min A001511
- sum A029931
- max A070939
A058698 counts partitions of prime numbers, strict A064688.
A372885 lists primes whose binary indices sum to a prime, indices A372886.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], PrimeQ[Total[2^#]/2]&]],{n,0,30}]

A372689 Positive integers whose binary indices (positions of ones in reversed binary expansion) sum to a prime number.

Original entry on oeis.org

2, 3, 4, 6, 9, 11, 12, 16, 18, 23, 26, 29, 33, 38, 41, 43, 44, 48, 50, 55, 58, 61, 64, 69, 71, 72, 74, 79, 81, 86, 89, 91, 92, 96, 101, 103, 104, 106, 111, 113, 118, 121, 131, 132, 134, 137, 142, 144, 149, 151, 152, 154, 159, 163, 164, 166, 169, 174, 176, 181
Offset: 1

Views

Author

Gus Wiseman, May 18 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Note the function taking a set s to its binary rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices).

Examples

			The terms together with their binary expansions and binary indices begin:
   2:      10 ~ {2}
   3:      11 ~ {1,2}
   4:     100 ~ {3}
   6:     110 ~ {2,3}
   9:    1001 ~ {1,4}
  11:    1011 ~ {1,2,4}
  12:    1100 ~ {3,4}
  16:   10000 ~ {5}
  18:   10010 ~ {2,5}
  23:   10111 ~ {1,2,3,5}
  26:   11010 ~ {2,4,5}
  29:   11101 ~ {1,3,4,5}
  33:  100001 ~ {1,6}
  38:  100110 ~ {2,3,6}
  41:  101001 ~ {1,4,6}
  43:  101011 ~ {1,2,4,6}
  44:  101100 ~ {3,4,6}
  48:  110000 ~ {5,6}
  50:  110010 ~ {2,5,6}
  55:  110111 ~ {1,2,3,5,6}
  58:  111010 ~ {2,4,5,6}
  61:  111101 ~ {1,3,4,5,6}
		

Crossrefs

Numbers k such that A029931(k) is prime.
Union of prime-indexed rows of A118462.
For even instead of prime we have A158704, odd A158705.
For prime indices instead of binary indices we have A316091.
The prime case is A372885, indices A372886.
A000040 lists the prime numbers, A014499 their binary indices.
A019565 gives Heinz number of binary indices, adjoint A048675.
A058698 counts partitions of prime numbers, strict A064688.
A372471 lists binary indices of primes, row-sums A372429.
A372687 counts strict partitions of prime binary rank, counted by A372851.
A372689 lists numbers whose binary indices sum to a prime.
A372885 lists primes whose binary indices sum to a prime, indices A372886.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Mathematica
    Select[Range[100],PrimeQ[Total[First /@ Position[Reverse[IntegerDigits[#,2]],1]]]&]
Previous Showing 31-40 of 93 results. Next