1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 1, 0, 0, 1, 10, 5, 0, 0, 0, 1, 15, 15, 1, 0, 0, 0, 1, 21, 35, 7, 0, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 1, 36, 126, 84, 9, 0, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0
Offset: 0
Triangle begins :
1
1, 0
1, 1, 0
1, 3, 0, 0
1, 6, 1, 0, 0
1, 10, 5, 0, 0, 0
1, 15, 15, 1, 0, 0, 0
1, 21, 35, 7, 0, 0, 0, 0
1, 28, 70, 28, 1, 0, 0, 0, 0
A083880
a(0)=1, a(1)=5, a(n) = 10*a(n-1) - 23*a(n-2), n >= 2.
Original entry on oeis.org
1, 5, 27, 155, 929, 5725, 35883, 227155, 1446241, 9237845, 59114907, 378678635, 2427143489, 15561826285, 99793962603, 640017621475, 4104915074881, 26328745454885, 168874407826587, 1083182932803515, 6947717948023649
Offset: 0
-
[ n eq 1 select 1 else n eq 2 select 5 else 10*Self(n-1)-23*Self(n-2): n in [1..21] ]; // Klaus Brockhaus, Dec 16 2008
-
LinearRecurrence[{10,-23},{1,5},30] (* Harvey P. Dale, May 14 2018 *)
-
a(n)=if(n<0,0,polsym(23-10*x+x^2,n)[n+1]/2)
A104537
Expansion of g.f.: (1+x)/(1+2*x+4x^2).
Original entry on oeis.org
1, -1, -2, 8, -8, -16, 64, -64, -128, 512, -512, -1024, 4096, -4096, -8192, 32768, -32768, -65536, 262144, -262144, -524288, 2097152, -2097152, -4194304, 16777216, -16777216, -33554432, 134217728, -134217728, -268435456, 1073741824, -1073741824, -2147483648, 8589934592
Offset: 0
-
I:=[1, -1]; [n le 2 select I[n] else -2*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 16 2014
-
A104537:=n->2^n*cos(2*Pi*n/3): seq(A104537(n), n=0..40); # Wesley Ivan Hurt, Nov 16 2014
-
CoefficientList[Series[(1 + x) / (1 + 2 x + 4 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 16 2014 *)
LinearRecurrence[{-2,-4},{1,-1},40] (* Harvey P. Dale, Dec 02 2019 *)
A117411
Skew triangle associated to the Euler numbers.
Original entry on oeis.org
1, 0, 1, 0, -4, 1, 0, 0, -12, 1, 0, 0, 16, -24, 1, 0, 0, 0, 80, -40, 1, 0, 0, 0, -64, 240, -60, 1, 0, 0, 0, 0, -448, 560, -84, 1, 0, 0, 0, 0, 256, -1792, 1120, -112, 1, 0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1, 0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1, 0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1
Offset: 0
Triangle begins
1;
0, 1;
0, -4, 1;
0, 0, -12, 1;
0, 0, 16, -24, 1;
0, 0, 0, 80, -40, 1;
0, 0, 0, -64, 240, -60, 1;
0, 0, 0, 0, -448, 560, -84, 1;
0, 0, 0, 0, 256, -1792, 1120, -112, 1;
0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1;
0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1;
0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1;
0, 0, 0, 0, 0, 0, 4096, -67584, 126720, -59136, 7920, -264, 1;
-
A117411:= func< n,k | (-4)^(n-k)*(&+[Binomial(n,k-j)*Binomial(j,n-k): j in [0..n-k]]) >;
[A117411(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 07 2022
-
T[n_,k_]:= T[n,k]= (-4)^(n-k)*Sum[Binomial[n, k-j]*Binomial[j, n-k], {j,0,n-k}];
Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 07 2022 *)
-
def A117411(n,k): return (-4)^(n-k)*sum(binomial(n,k-j)*binomial(j,n-k) for j in (0..n-k))
flatten([[A117411(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 07 2022
A147957
a(n) = ((6 + sqrt(2))^n + (6 - sqrt(2))^n)/2.
Original entry on oeis.org
1, 6, 38, 252, 1732, 12216, 87704, 637104, 4663312, 34298208, 253025888, 1870171584, 13839178816, 102484311936, 759279663488, 5626889356032, 41707163713792, 309171726460416, 2292017151256064, 16992367115418624, 125979822242317312, 934017384983574528, 6924894663564105728
Offset: 0
Al Hakanson (hawkuu(AT)blogspot.com), Nov 17 2008
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((6+r2)^n+(6-r2)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008
-
LinearRecurrence[{12, -34}, {1, 6}, 50] (* G. C. Greubel, Aug 17 2018 *)
-
my(x='x+O('x^50)); Vec((1-6*x)/(1-12*x+34*x^2)) \\ G. C. Greubel, Aug 17 2018
A147958
a(n) = ((7 + sqrt(2))^n + (7 - sqrt(2))^n)/2.
Original entry on oeis.org
1, 7, 51, 385, 2993, 23807, 192627, 1577849, 13036417, 108350935, 904201491, 7566326929, 63431106929, 532418131343, 4472591813139, 37592633210825, 316085049734017, 2658336935367463, 22360719757645683, 188108240644768801
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Nov 17 2008
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((7+r2)^n+(7-r2)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008
-
LinearRecurrence[{14, -47}, {1, 7}, 50] (* G. C. Greubel, Aug 17 2018 *)
-
x='x+O('x^30); Vec((1-7*x)/(1-14*x+47*x^2)) \\ G. C. Greubel, Aug 17 2018
A147959
a(n) = ((8 + sqrt(2))^n + (8 - sqrt(2))^n)/2.
Original entry on oeis.org
1, 8, 66, 560, 4868, 43168, 388872, 3545536, 32618512, 302072960, 2810819616, 26244590336, 245642629184, 2303117466112, 21620036448384, 203127300275200, 1909594544603392, 17959620096591872, 168959059780059648
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Nov 17 2008
a(3) = ((8 + sqrt(2))^3 + (8 - sqrt(2))^3)/2
= (8^3 + 3*8^2*sqrt(2) + 3*8*2 + 2*sqrt(2)
+ 8^3 - 3*8^2*sqrt(2) + 3*8*2 - 2*sqrt(2))/2
= 8^3 + 3*8*2
= 560.
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((8+r2)^n+(8-r2)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008
-
LinearRecurrence[{16, -62}, {1, 8}, 50] (* G. C. Greubel, Aug 17 2018 *)
-
x='x+O('x^30); Vec((1-8*x)/(1-16*x+62*x^2)) \\ G. C. Greubel, Aug 17 2018
A147960
a(n) = ((9 + sqrt(2))^n + (9 - sqrt(2))^n)/2.
Original entry on oeis.org
1, 9, 83, 783, 7537, 73809, 733139, 7365591, 74662657, 762046137, 7818480563, 80531005311, 831898131121, 8612216940609, 89299952572403, 927034007995143, 9631915890692737, 100138799400852969, 1041577033850627219
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Nov 17 2008
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((9+r2)^n+(9-r2)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008
-
LinearRecurrence[{18, -79}, {1, 9}, 50] (* G. C. Greubel, Aug 17 2018 *)
-
x='x+O('x^30); Vec((1-9*x)/(1-18*x+79*x^2)) \\ G. C. Greubel, Aug 17 2018
A083879
a(0)=1, a(1)=4, a(n) = 8*a(n-1) - 14*a(n-2), n >= 2.
Original entry on oeis.org
1, 4, 18, 88, 452, 2384, 12744, 68576, 370192, 2001472, 10829088, 58612096, 317289536, 1717746944, 9299922048, 50350919168, 272608444672, 1475954689024, 7991119286784, 43265588647936, 234249039168512, 1268274072276992
Offset: 0
Comments