A339195
Triangle of squarefree numbers grouped by greatest prime factor, read by rows.
Original entry on oeis.org
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 66, 77, 110, 154, 165, 231, 330, 385, 462, 770, 1155, 2310, 13, 26, 39, 65, 78, 91, 130, 143, 182, 195, 273, 286, 390, 429, 455, 546, 715, 858, 910, 1001, 1365, 1430, 2002, 2145, 2730, 3003, 4290, 5005, 6006, 10010, 15015, 30030
Offset: 0
Triangle begins:
1
2
3 6
5 10 15 30
7 14 21 35 42 70 105 210
- Alois P. Heinz, Rows n = 0..14, flattened
- Michael De Vlieger, Plot p | a(n) at (x,y) = (n,pi(p)), n = 0..2047, 12X vertical exaggeration.
- Michael De Vlieger, Fan style binary tree showing a(n), n = 0..2047, with a color function related to the order of a(n) in A019565.
- Michael De Vlieger, Fan style binary tree showing a(n), n = 0..2047, with a color function showing 1 in gray, primes in red, primorials in bright green, even squarefree semiprimes in yellow, odd squarefree semiprimes in light green, thereafter, progressively deeper green related to omega(a(n)) = m until m >= 6.
A209862 takes prime indices to binary indices in these terms.
A246867 groups squarefree numbers by Heinz weight, with row sums
A147655.
A005117 lists squarefree numbers, ordered lexicographically by prime factors:
A019565.
A006881 lists squarefree semiprimes.
A072047 counts prime factors of squarefree numbers.
A319246 is the sum of prime indices of the n-th squarefree number.
-
T:= proc(n) option remember; `if`(n=0, 1, (p-> map(
x-> x*p, {seq(T(i), i=0..n-1)})[])(ithprime(n)))
end:
seq(T(n), n=0..6); # Alois P. Heinz, Jan 08 2025
-
Table[Prime[n]*Sort[Times@@Prime/@#&/@Subsets[Range[n-1]]],{n,5}]
A338908
Squarefree semiprimes whose prime indices sum to an even number.
Original entry on oeis.org
10, 21, 22, 34, 39, 46, 55, 57, 62, 82, 85, 87, 91, 94, 111, 115, 118, 129, 133, 134, 146, 155, 159, 166, 183, 187, 194, 203, 205, 206, 213, 218, 235, 237, 247, 253, 254, 259, 267, 274, 295, 298, 301, 303, 314, 321, 334, 335, 339, 341, 358, 365, 371, 377, 382
Offset: 1
The sequence of terms together with their prime indices begins:
10: {1,3} 115: {3,9} 213: {2,20}
21: {2,4} 118: {1,17} 218: {1,29}
22: {1,5} 129: {2,14} 235: {3,15}
34: {1,7} 133: {4,8} 237: {2,22}
39: {2,6} 134: {1,19} 247: {6,8}
46: {1,9} 146: {1,21} 253: {5,9}
55: {3,5} 155: {3,11} 254: {1,31}
57: {2,8} 159: {2,16} 259: {4,12}
62: {1,11} 166: {1,23} 267: {2,24}
82: {1,13} 183: {2,18} 274: {1,33}
85: {3,7} 187: {5,7} 295: {3,17}
87: {2,10} 194: {1,25} 298: {1,35}
91: {4,6} 203: {4,10} 301: {4,14}
94: {1,15} 205: {3,13} 303: {2,26}
111: {2,12} 206: {1,27} 314: {1,37}
A031215 looks at primes instead of semiprimes.
A300061 and
A319241 (squarefree) look all numbers (not just semiprimes).
A338905 has this as union of even-indexed rows.
A338906 is the nonsquarefree version.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A056239 gives the sum of prime indices of n.
A320656 counts factorizations into squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
A338911 lists products of pairs of primes both of even index.
A339116 groups squarefree semiprimes by greater prime factor.
Cf.
A000040,
A001221,
A001222,
A087112,
A098350,
A112798,
A168472,
A338901,
A338904,
A339004,
A339005.
A339360
Sum of all squarefree numbers with greatest prime factor prime(n).
Original entry on oeis.org
1, 2, 9, 60, 504, 6336, 89856, 1645056, 33094656, 801239040, 24246190080, 777550233600, 29697402470400, 1250501433753600, 55083063155097600, 2649111037319577600, 143390180403000115200, 8619643674791667302400, 534710099148093259776000, 36412881178052121329664000
Offset: 0
The initial terms are:
1 = 1,
2 = 2,
9 = 3 + 6,
60 = 5 + 10 + 15 + 30.
A010036 takes prime indices here to binary indices, row sums of
A209862.
A048672 takes prime indices to binary indices in squarefree numbers.
A072047 counts prime factors of squarefree numbers.
A006881 lists squarefree semiprimes.
A056239 is the sum of prime indices of n (Heinz weight).
A319246 is the sum of prime indices of the n-th squarefree number.
A319247 lists reversed prime indices of squarefree numbers.
A329631 lists prime indices of squarefree numbers.
-
f:= proc(n) local i;
`if`(n=0, 1, ithprime(n)) *mul(1+ithprime(i),i=1..n-1)
end proc:
map(f, [$0..20]); # Robert Israel, Dec 08 2020
-
Table[Sum[Times@@Prime/@stn,{stn,Select[Subsets[Range[n]],MemberQ[#,n]&]}],{n,10}]
A339194
Sum of all squarefree semiprimes with greater prime factor prime(n).
Original entry on oeis.org
0, 6, 25, 70, 187, 364, 697, 1102, 1771, 2900, 3999, 5920, 8077, 10234, 13207, 17384, 22479, 26840, 33567, 40328, 46647, 56248, 65653, 77786, 93411, 107060, 119583, 135248, 149439, 167240, 202311, 225320, 253587, 276332, 316923, 343676, 381039, 421192, 458749
Offset: 1
The triangle A339116 with row sums equal to this sequence begins (n > 1):
6 = 6
25 = 10 + 15
70 = 14 + 21 + 35
187 = 22 + 33 + 55 + 77
A025129 gives sums of squarefree semiprimes by weight, row sums of
A338905.
A143215 is the not necessarily squarefree version, row sums of
A087112.
A339116 is a triangle of squarefree semiprimes with these row sums.
A024697 is the sum of semiprimes of weight n.
A168472 gives partial sums of squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
-
Table[Sum[Prime[i]*Prime[j],{j,i-1}],{i,10}]
-
a(n) = prime(n)*vecsum(primes(n-1)); \\ Michel Marcus, Jun 15 2024
A141617
Triangle read by rows: T(n, k) = binomial(n,k)*prime(k)*prime(n-k), for 1 <= k <= n-1, n >= 1, with T(0, 0) = 1, T(n, 0) = T(n, n) = prime(n).
Original entry on oeis.org
1, 2, 2, 3, 8, 3, 5, 18, 18, 5, 7, 40, 54, 40, 7, 11, 70, 150, 150, 70, 11, 13, 132, 315, 500, 315, 132, 13, 17, 182, 693, 1225, 1225, 693, 182, 17, 19, 272, 1092, 3080, 3430, 3080, 1092, 272, 19, 23, 342, 1836, 5460, 9702, 9702, 5460, 1836, 342, 23
Offset: 0
Triangle begins as:
1;
2, 2;
3, 8, 3;
5, 18, 18, 5;
7, 40, 54, 40, 7;
11, 70, 150, 150, 70, 11;
13, 132, 315, 500, 315, 132, 13;
17, 182, 693, 1225, 1225, 693, 182, 17;
19, 272, 1092, 3080, 3430, 3080, 1092, 272, 19;
23, 342, 1836, 5460, 9702, 9702, 5460, 1836, 342, 23;
29, 460, 2565, 10200, 19110, 30492, 19110, 10200, 2565, 460, 29;
...
-
function A141617(n,k)
if n eq 0 then return 1;
else return Binomial(n,k)*NthPrime(k)*NthPrime(n-k);
end if;
end function;
[A141617(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 26 2024
-
p:= n-> `if`(n=0, 1, ithprime(n)):
T:= (n, k)-> binomial(n, k)*p(k)*p(n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 26 2023
-
A141617[n_, k_]:= If[n==0, 1, If[k==0 || k==n, Prime[n], Binomial[n, k]*Prime[k]*Prime[n-k]]];
Table[A414617[n,k], {n,0,12}, {k,0,n}]//Flatten
-
def A141617(n,k):
if n==0: return 1
elif k==0 or k==n: return nth_prime(n)
else: return binomial(n,k)*nth_prime(k)*nth_prime(n-k)
flatten([[A141617(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 26 2024
A143215
a(n) = prime(n) * Sum_{i=1..n} prime(i).
Original entry on oeis.org
4, 15, 50, 119, 308, 533, 986, 1463, 2300, 3741, 4960, 7289, 9758, 12083, 15416, 20193, 25960, 30561, 38056, 45369, 51976, 62489, 72542, 85707, 102820, 117261, 130192, 146697, 161320, 180009, 218440, 242481, 272356, 295653, 339124, 366477
Offset: 1
The series begins (4, 15, 50, 119, 308,...) since the primes = (2, 3, 5, 7, 11,...) and partial sum of primes = (2, 5, 10, 17, 28,...).
a(5) = 308 = 11 * 28.
a(4) = 119 = sum of row 4 terms of triangle A087112: (14 + 21 + 35 + 49).
Squarefree semiprimes grouped by weight are
A338905, with row sums
A025129.
Squarefree numbers grouped by greatest prime factor are
A339195, with row sums
A339360.
A006881 lists squarefree semiprimes.
A332765 is the greatest semiprime of weight n.
Cf.
A000040,
A001222,
A001748,
A007504,
A014342,
A098350,
A100484,
A168472,
A319613,
A339003,
A339114/
A339115.
-
a143215 n = a000040 n * a007504 n -- Reinhard Zumkeller, Nov 25 2012
-
A143215:= func< n | NthPrime(n)*(&+[NthPrime(j): j in [1..n]]) >;
[A143215(n): n in [1..50]]; // G. C. Greubel, Aug 27 2024
-
A143215:=n->ithprime(n)*sum(ithprime(i), i=1..n); seq(A143215(n), n=1..50); # Wesley Ivan Hurt, Mar 26 2014
-
Table[Prime[n]*Sum[Prime[i], {i, n}], {n, 50}] (* Wesley Ivan Hurt, Mar 26 2014 *)
-
a(n) = prime(n)*vecsum(primes(n)); \\ Michel Marcus, Jun 15 2024
-
def A143215(n): return nth_prime(n)*sum(nth_prime(j) for j in range(1,n+1))
[A143215(n) for n in range(1,51)] # G. C. Greubel, Aug 27 2024
A098351
Multiplication table of the composites read by antidiagonals.
Original entry on oeis.org
16, 24, 24, 32, 36, 32, 36, 48, 48, 36, 40, 54, 64, 54, 40, 48, 60, 72, 72, 60, 48, 56, 72, 80, 81, 80, 72, 56, 60, 84, 96, 90, 90, 96, 84, 60, 64, 90, 112, 108, 100, 108, 112, 90, 64, 72, 96, 120, 126, 120, 120, 126, 120, 96, 72, 80, 108, 128, 135, 140, 144, 140, 135, 128
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
16, 24, 32, 36, 40, 48, 56, 60, 64, 72,...
24, 36, 48, 54, 60, 72, 84, 90, 96,108,...
32, 48, 64, 72, 80, 96,112,120,128,144,...
36, 54, 72, 81, 90,108,126,135,144,162,...
40, 60, 80, 90,100,120,140,150,160,180,...
48, 72, 96,108,120,144,168,180,192,216,...
A347047
Smallest squarefree semiprime whose prime indices sum to n.
Original entry on oeis.org
6, 10, 14, 21, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 3
The initial terms and their prime indices:
6: {1,2}
10: {1,3}
14: {1,4}
21: {2,4}
26: {1,6}
34: {1,7}
38: {1,8}
46: {1,9}
The opposite version (greatest instead of smallest) is
A332765.
These are the minima of rows of
A338905.
A246868 gives the greatest squarefree number whose prime indices sum to n.
A339362 adds up prime indices of squarefree semiprimes.
Cf.
A001221,
A087112,
A089994,
A098350,
A176504,
A338900,
A338901,
A338904,
A338907/
A338908,
A339005,
A339191.
-
Table[Min@@Select[Table[Times@@Prime/@y,{y,IntegerPartitions[n,{2}]}],SquareFreeQ],{n,3,50}]
-
from sympy import prime, sieve
def a(n):
p = [0] + list(sieve.primerange(1, prime(n)+1))
return min(p[i]*p[n-i] for i in range(1, (n+1)//2))
print([a(n) for n in range(3, 58)]) # Michael S. Branicky, Sep 05 2021
Comments