cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A052521 Number of pairs of sequences of cardinality at least 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 10080, 120960, 1451520, 18144000, 239500800, 3353011200, 49816166400, 784604620800, 13076743680000, 230150688768000, 4268249137152000, 83230858174464000, 1703031405723648000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. sequences with formula (n + k)*n! listed in A282466.

Programs

  • GAP
    Concatenation([0,0,0,0,0,0], List([6..20], n-> (n-5)*Factorial(n))); # G. C. Greubel, May 13 2019
  • Magma
    [n le 5 select 0 else (n-5)*Factorial(n): n in [0..20]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{B=Sequence(Z,3 <= card), S=Prod(B,B)},labeled]: # Pairs spec
    seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    Table[If[n<6, 0, (n-5)*n!], {n,0,20}] (* G. C. Greubel, May 13 2019 *)
  • PARI
    {a(n) = if(n<6, 0, (n-5)*n!)}; \\ G. C. Greubel, May 13 2019
    
  • Sage
    [0,0,0,0,0,0]+[(n-5)*factorial(n) for n in (6..20)] # G. C. Greubel, May 13 2019
    

Formula

E.g.f.: x^6/(1-x)^2.
(n-5)*a(n+1) + (4 + 3*n - n^2)*a(n) = 0, with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = 0, a(6) = 720.
a(n) = (n-5)*n!.
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=6} 1/a(n) = 5477/7200 - 17*e/60 - gamma/120 + Ei(1)/120 = 5477/7200 - (17/60)*A001113 - (1/120)*A001620 + A091725/120.
Sum_{n>=6} (-1)^n/a(n) = 403/7200 - 1/(6*e) + gamma/120 - Ei(-1)/120 = 403/7200 - (1/6)*A068985 + (1/120)*A001620 + (1/120)*A099285. (End)

A062194 Fifth column sequence of triangle A062139 (generalized a=2 Laguerre).

Original entry on oeis.org

1, 35, 840, 17640, 352800, 6985440, 139708800, 2854051200, 59935075200, 1298593296000, 29088489830400, 674324082432000, 16183777978368000, 402104637462528000, 10339833534750720000, 275039572024369152000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • GAP
    List([0..15],n->Factorial(n+4)*Binomial(n+6,6)/Factorial(4)); # Muniru A Asiru, Jul 01 2018
  • Magma
    [Factorial(n+4)*Binomial(n+6, 6)/Factorial(4): n in [0..20]]; // G. C. Greubel, May 12 2018
    
  • Mathematica
    Table[(n+4)!*Binomial[n+6,6]/4!, {n, 0, 20}] (* G. C. Greubel, May 12 2018 *)
  • PARI
    { f=6; for (n=0, 100, f*=n + 4; write("b062194.txt", n, " ", f*binomial(n + 6, 6)/24) ) } \\ Harry J. Smith, Aug 02 2009
    
  • Sage
    [binomial(n,6)*factorial (n-2)/factorial (4) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
    

Formula

E.g.f.: (1 + 24*x + 90*x^2 + 80*x^3 + 15*x^4)/(1-x)^11.
a(n) = A062139(n+4, 4).
a(n) = (n+4)!*binomial(n+6, 6)/4!.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..n} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-4) = (-1)^n*f(n,4,-7), (n >= 4). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 336*(gamma - Ei(1)) - 96*e + 3524/5, where gamma = A001620, Ei(1) = A091725, and e = A001113.
Sum_{n>=0} (-1)^n/a(n) = 3264*(gamma - Ei(-1)) - 1920/e - 9464/5, where Ei(-1) = -A099285. (End)

A111598 Lah numbers: a(n) = n!*binomial(n-1,7)/8!.

Original entry on oeis.org

1, 72, 3240, 118800, 3920400, 122316480, 3710266560, 111307996800, 3339239904000, 100919250432000, 3088129063219200, 96012739965542400, 3040403432242176000, 98228418580131840000, 3241537813144350720000
Offset: 8

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.

Crossrefs

Column 8 of unsigned A008297 and A111596.
Column 7 of A111597.

Programs

  • Magma
    [Factorial(n-8)*Binomial(n,8)*Binomial(n-1,7): n in [8..35]]; // G. C. Greubel, May 10 2021
    
  • Mathematica
    Table[(n-8)!*Binomial[n-1,7]*Binomial[n,8], {n,8,35}] (* G. C. Greubel, May 10 2021 *)
  • Sage
    [factorial(n-8)*binomial(n,8)*binomial(n-1,7) for n in (8..35)] # G. C. Greubel, May 10 2021

Formula

E.g.f.: ((x/(1-x))^8)/8!.
a(n) = (n!/8!)*binomial(n-1, 8-1).
If we define f(n,i,x) = Sum_{k=i..n}(Sum_{j=i..k} (binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) ) ) then a(n) = (-1)^n*f(n,8,-8), (n>=8). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=8} 1/a(n) = 61096*(gamma - Ei(1)) + 54544*e - 338732/5, where gamma = A001620, Ei(1) = A091725 and e = A001113.
Sum_{n>=8} (-1)^n/a(n) = 2107448*(gamma - Ei(-1)) - 1257760/e - 6080436/5, where Ei(-1) = -A099285. (End)

A136659 Unsigned third column (k=2) of triangle A136656 divided by 4.

Original entry on oeis.org

1, 9, 75, 660, 6300, 65520, 740880, 9072000, 119750400, 1696464000, 25686460800, 414096883200, 7083236160000, 128152088064000, 2445351068160000, 49084865077248000, 1033983353475072000, 22808456326656000000, 525810946517176320000, 12645008187498086400000
Offset: 0

Views

Author

Wolfdieter Lang, Feb 22 2008

Keywords

Comments

Also unsigned second column of triangle A136657 divided by 2.

References

  • Charalambos A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, Table 8.3, p. 311, with s=-2, k=2 column/4.

Crossrefs

Cf. A001710 (1/2 of unsigned k=1 column of A136657). A136660 (k=3 column divided by 8), A136656.

Programs

  • Mathematica
    a[n_] := (n + 8)*(n + 1)*(n + 3)!/48; Array[a, 20, 0] (* Amiram Eldar, Aug 31 2025 *)

Formula

a(n) = |A136656(n+2,2)|/4, n>=0.
E.g.f.: (2+6*x-3*x^2)/(2*(1-x)^6) (derived from the one given for the column k=2 under A136656).
a(n) = (n+4)!/2 * sum((k+1)!/(k+4)!,k=1..n), with offset 1. - Gary Detlefs, Jul 27 2010
a(n) = (1/48) * (n+8)*(n+1)*(n+3)!. - Gary Detlefs, Aug 03 2010
From Amiram Eldar, Aug 31 2025: (Start)
Sum_{n>=0} 1/a(n) = 44836/245 - 480*e/7 - 24*gamma/7 + 24*ExpIntegralEi(1)/7, where e = A001113, gamma = A001620, and ExpIntegralEi(1) = A091725.
Sum_{n>=0} (-1)^n/a(n) = 39724/245 - 3120/(7*e) + 24*gamma/7 - 24*ExpIntegralEi(-1)/7, where ExpIntegralEi(-1) = -A099285. (End)

A216119 Number of stretching pairs in all permutations in S_n.

Original entry on oeis.org

0, 0, 0, 2, 30, 360, 4200, 50400, 635040, 8467200, 119750400, 1796256000, 28540512000, 479480601600, 8499883392000, 158664489984000, 3112264995840000, 64023737057280000, 1378644471300096000, 31019500604252160000, 728045925946859520000, 17796678189812121600000
Offset: 1

Views

Author

Emeric Deutsch, Feb 26 2013

Keywords

Comments

A stretching pair of a permutation p in S_n is a pair (i,j) (1 <= i < j <= n) satisfying p(i) < i < j < p(j). For example, for the permutation 31254 in S_5 the pair (2,4) is stretching because p(2) = 1 < 2 < 4 < p(4) = 5.

Examples

			a(4) = 2 because 2143 has 1 stretching (namely (2,3)), 3142 has 1 stretching pair (namely (2,3)), and the other 22 permutations in S_4 have no stretching pairs.
		

References

  • E. Lundberg and B. Nagle, A permutation statistic arising in dynamics of internal maps. (submitted)

Crossrefs

Programs

  • GAP
    Concatenation([0],List([2..22],n->Factorial(n)*(n-2)*(n-3)/24)); # Muniru A Asiru, Nov 29 2018
  • Magma
    [Factorial(n)*(n-2)*(n-3) div 24: n in [1..30]]; // Vincenzo Librandi, Nov 29 2018
    
  • Maple
    0, seq((1/24)*factorial(n)*(n-2)*(n-3), n = 2 .. 22);
  • Mathematica
    Join[{0}, Table[n! (n - 2) (n - 3) / 24, {n, 2, 30}]] (* Vincenzo Librandi, Nov 29 2018 *)

Formula

a(n) = n!*(n-2)*(n-3)/24.
a(n) = 2*A005461(n-3).
a(n) = Sum_{k>=1} A216118(k).
a(n) = Sum_{k>=1} k*A216120(n,k).
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=4} 1/a(n) = 8*(gamma - Ei(1)) + 8*e - 32/3, where gamma = A001620, Ei(1) = A091725, and e = A001113.
Sum_{n>=4} (-1)^n/a(n) = 16*(gamma - Ei(-1)) - 8/e - 28/3, where Ei(-1) = -A099285. (End)
D-finite with recurrence a(n) +(-n-10)*a(n-1) +4*(2*n+3)*a(n-2) +12*(-n+2)*a(n-3)=0. - R. J. Mathar, Jul 26 2022

A257535 Decimal expansion of the imaginary part of -E_1(i), i being the imaginary unit.

Original entry on oeis.org

6, 2, 4, 7, 1, 3, 2, 5, 6, 4, 2, 7, 7, 1, 3, 6, 0, 4, 2, 8, 9, 9, 6, 8, 3, 7, 7, 8, 1, 6, 5, 7, 1, 7, 8, 4, 2, 8, 6, 2, 4, 6, 7, 4, 4, 9, 4, 9, 4, 4, 1, 1, 2, 0, 0, 1, 6, 0, 1, 7, 5, 2, 2, 5, 8, 7, 2, 2, 1, 1, 6, 6, 6, 0, 2, 3, 0, 6, 5, 8, 1, 2, 2, 5, 3, 1, 5, 2, 7, 9, 5, 8, 9, 3, 1, 7, 8, 2, 2, 7, 7, 6, 0, 5, 0
Offset: 0

Views

Author

Stanislav Sykora, Apr 28 2015

Keywords

Comments

E_1(z) = Integral_{t>=1}(exp(-t*z)/t) is the exponential integral.

Examples

			0.6247132564277136042899683778165717842862467449494411200160175...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/2 - SinIntegral[1], 10, 105][[1]] (* Amiram Eldar, May 24 2023 *)
  • PARI
    a = imag(-eint1(I))

Formula

Equals imag(E_1(-i)).
Equals (Pi/2) - A099281.

A062195 Sixth (unsigned) column sequence of triangle A062139 (generalized a=2 Laguerre).

Original entry on oeis.org

1, 48, 1512, 40320, 997920, 23950080, 570810240, 13699445760, 333923990400, 8310997094400, 211930425907200, 5548723878297600, 149353151057510400, 4135933413900288000, 117874102296158208000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n+5)*Binomial(n+7, 7)/Factorial(5): n in [0..20]]; // G. C. Greubel, May 12 2018
  • Mathematica
    Table[(n+5)!*Binomial[n+7, 7]/5!, {n, 0, 20}] (* G. C. Greubel, May 12 2018 *)
  • PARI
    { f=24; for (n=0, 100, f*=n + 5; write("b062195.txt", n, " ", f*binomial(n + 7, 7)/120) ) } \\ Harry J. Smith, Aug 02 2009
    

Formula

E.g.f.: N(2;5, x)/(1-x)^13 with N(2;5, x) := Sum_{k=0..5} A062196(5, k)*x^k = 1+35*x+210*x^2+350*x^3+175*x^4+21*x^5.
a(n) = A062139(n+5, 5).
a(n) = (n+5)!*binomial(n+7, 7)/5!.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-5) = (-1)^(n-1)*f(n,5,-8), (n>=5). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 1295*(Ei(1) - gamma) + 2170*e - 22813/3, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=0} (-1)^n/a(n) = 36575*(gamma - Ei(-1)) - 21700/e - 63455/3, where Ei(-1) = -A099285. (End)

A245780 Decimal expansion of (1-C_2)/e, a constant connected with two-sided generalized Fibonacci sequences, where C_2 is the Euler-Gompertz constant.

Original entry on oeis.org

1, 4, 8, 4, 9, 5, 5, 0, 6, 7, 7, 5, 9, 2, 2, 0, 4, 7, 9, 1, 8, 3, 5, 9, 9, 9, 4, 7, 0, 1, 3, 3, 9, 2, 1, 8, 4, 1, 4, 7, 6, 3, 8, 3, 7, 6, 2, 4, 8, 5, 9, 6, 2, 6, 9, 2, 9, 8, 5, 8, 1, 8, 8, 6, 2, 3, 8, 9, 2, 7, 9, 7, 1, 8, 5, 7, 5, 8, 2, 5, 8, 6, 3, 4, 9, 3, 7, 0, 2, 3, 3, 1, 0, 7, 8, 2, 3, 9, 3, 7, 9
Offset: 0

Views

Author

Jean-François Alcover, Aug 01 2014

Keywords

Examples

			0.148495506775922047918359994701339218414763837624859626929858...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.2 Euler-Gompertz Constant, p. 426.

Crossrefs

Cf. A073003 (C_2), A099285 (C_2 / e).

Programs

  • Mathematica
    $RecursionLimit = 10^4; digits = 101; m0 = 100; dm = 100; Clear[g]; g[m_] := g[m] = (Clear[a, b, f]; b[n_] := 2*n; a[n_ /; n >= m] = 0; a[1] = 1; a[2] = -1; a[n_] := -(n-1)^2; f[m] = b[m]; f[n_] := f[n] = b[n] + a[n+1]/f[n+1]; (1 - f[0])/E); g[m0]; g[m = m0 + dm]; While[RealDigits[g[m], 10, digits] != RealDigits[g[m - dm], 10, digits], m = m + dm]; RealDigits[g[m], 10, digits] // First
    (* or, as verification: *) RealDigits[1/E + ExpIntegralEi[-1], 10, digits] // First
  • PARI
    1/exp(1) - eint1(1,1)[1] \\ Michel Marcus, Aug 06 2020

Formula

Equals 1/e + Ei(-1), where Ei is the exponential integral function.
Equals Integral_{x=0..1} exp(-1/x) dx. - Amiram Eldar, Aug 06 2020
Equals Integral_{x=1..+oo} exp(-x)/x^2 dx. - Jianing Song, Oct 03 2021
Equals lim_{n->oo} (Sum_{k=1..n-1} (k/(k+1))^n)/n (Janous, 1990). - Amiram Eldar, Apr 03 2022

A249385 Decimal expansion of gamma - 2*Ei(-1), one of the Tauberian constants, where Ei is the exponential integral function.

Original entry on oeis.org

1, 0, 1, 5, 9, 8, 3, 5, 3, 3, 6, 9, 2, 5, 7, 3, 4, 0, 7, 9, 6, 0, 8, 3, 9, 6, 4, 1, 0, 0, 2, 6, 4, 5, 7, 2, 9, 1, 0, 4, 2, 5, 3, 9, 2, 2, 7, 5, 3, 7, 4, 0, 0, 1, 3, 9, 6, 1, 7, 2, 4, 4, 6, 1, 0, 3, 2, 0, 0, 5, 1, 2, 3, 8, 9, 5, 9, 4, 7, 7, 6, 0, 3, 8, 1, 3, 6, 7, 5, 6, 5, 3, 6, 2, 0, 2, 1, 2, 4, 9, 4, 2, 4
Offset: 1

Views

Author

Jean-François Alcover, Oct 27 2014

Keywords

Examples

			1.01598353369257340796083964100264572910425392275374...
		

Crossrefs

Programs

  • Maple
    evalf(gamma - 2*Ei(-1), 120); # Vaclav Kotesovec, Oct 27 2014
  • Mathematica
    RealDigits[ EulerGamma - 2*ExpIntegralEi[-1], 10, 103] // First
  • PARI
    default(realprecision, 100); Euler + 2*eint1(1) \\ G. C. Greubel, Sep 04 2018

Formula

Also equals gamma + 2*G/e, where G is the Euler-Gompertz constant 0.596347...
Equals A001620 + 2*A073003/e. - G. C. Greubel, Sep 04 2018

A282822 a(n) = (n - 4)*n! for n>=0.

Original entry on oeis.org

-4, -3, -4, -6, 0, 120, 1440, 15120, 161280, 1814400, 21772800, 279417600, 3832012800, 56043187200, 871782912000, 14384418048000, 251073478656000, 4623936565248000, 89633231880192000, 1824676506132480000, 38926432130826240000, 868546016919060480000
Offset: 0

Views

Author

Bruno Berselli, Feb 22 2017

Keywords

Crossrefs

Cf. A034865.
Cf. sequences with formula (n + k)*n! listed in A282466.

Programs

  • Mathematica
    Table[(n - 4) n!, {n, 0, 30}] (* or *)
    RecurrenceTable[{a[0] == -4, a[n] == n a[n - 1] + n!}, a, {n, 0, 30}]

Formula

E.g.f.: -(4 - 5*x)/(1 - x)^2.
a(n) = n*a(n-1) + n!, with n>0, a(0)=-4.
a(n) = 2*A034865(n) for n>3.
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=5} 1/a(n) = 313/288 - 5*e/12 - gamma/24 + Ei(1)/24 = 313/288 - (5/12)*A001113 - (1/24)*A001620 + A091725/24.
Sum_{n>=5} (-1)^(n+1)/a(n) = -25/288 + 1/(6*e) + gamma/24 - Ei(-1)/24 = -25/288 - (1/6)*A068985 + (1/24)*A001620 + (1/24)*A099285. (End)
Previous Showing 31-40 of 46 results. Next