cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 51 results. Next

A103999 Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2M x 2N Klein bottle.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 16, 34, 1, 1, 54, 196, 198, 1, 1, 196, 1666, 2704, 1154, 1, 1, 726, 16384, 64152, 37636, 6726, 1, 1, 2704, 171394, 1844164, 2549186, 524176, 39202, 1, 1, 10086, 1844164, 57523158, 220581904, 101757654, 7300804, 228486, 1
Offset: 0

Views

Author

Ralf Stephan, Feb 26 2005

Keywords

Examples

			Array begins:
  1,   1,     1,        1,           1,             1,                1, ...
  1,   6,    34,      198,        1154,          6726,            39202, ...
  1,  16,   196,     2704,       37636,        524176,          7300804, ...
  1,  54,  1666,    64152,     2549186,     101757654,       4064620168, ...
  1, 196, 16384,  1844164,   220581904,   26743369156,    3252222705664, ...
  1, 726,171394, 57523158, 21050622914, 7902001927776, 2988827208115522, ...
		

Crossrefs

Rows include A003499, A067902+2. Columns include A003500+2.
Main diagonal gives A340557.

Programs

  • Mathematica
    T[m_, n_] := Product[4 Sin[(4k-1) Pi/(4n)]^2 + 4 Cos[j Pi/(2m+1)]^2, {j, 1, m}, {k, 1, n}] // Round;
    Table[T[m-n, n], {m, 0, 9}, {n, 0, m}] // Flatten (* Jean-François Alcover, Aug 20 2018 *)
  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin((4*a-1)*Pi/(4*n))^2+4*sin((2*b-1)*Pi/(2*k))^2)))} \\ Seiichi Manyama, Jan 11 2021

Formula

T(M, N) = Product_{m=1..M} Product_{n=1..N} ( 4sin(Pi*(4n-1)/(4N))^2 + 4sin(Pi*(2m-1)/(2M))^2 ).

A189006 Array A(m,n) read by antidiagonals: number of domino tilings of the m X n grid with upper left corner removed iff m*n is odd, (m>=0, n>=0).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 4, 5, 1, 1, 1, 1, 8, 11, 11, 8, 1, 1, 1, 1, 13, 15, 36, 15, 13, 1, 1, 1, 1, 21, 41, 95, 95, 41, 21, 1, 1, 1, 1, 34, 56, 281, 192, 281, 56, 34, 1, 1, 1, 1, 55, 153, 781, 1183, 1183, 781, 153, 55, 1, 1, 1, 1, 89, 209, 2245, 2415, 6728, 2415, 2245, 209, 89, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Examples

			A(3,3) = 4, because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed:
  . .___. . .___. . .___. . .___.
  ._|___| ._|___| ._| | | ._|___|
  | |___| | | | | | |_|_| |___| |
  |_|___| |_|_|_| |_|___| |___|_|
Array begins:
  1, 1,  1,  1,   1,    1,    1, ...
  1, 1,  1,  1,   1,    1,    1, ...
  1, 1,  2,  3,   5,    8,   13, ...
  1, 1,  3,  4,  11,   15,   41, ...
  1, 1,  5, 11,  36,   95,  281, ...
  1, 1,  8, 15,  95,  192, 1183, ...
  1, 1, 13, 41, 281, 1183, 6728, ...
		

Crossrefs

Rows m=0+1, 2-12 give: A000012, A000045(n+1), A002530(n+1), A005178(n+1), A189003, A028468, A189004, A028470, A189005, A028472, A210724, A028474.
Main diagonal gives: A189002.

Programs

  • Maple
    with(LinearAlgebra):
    A:= proc(m, n) option remember; local i, j, s, t, M;
          if m=0 or n=0 then 1
        elif m1 or j>1 or s=0 then
                   if j
    				
  • Mathematica
    A[1, 1] = 1; A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2];M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i-1)*m+j-s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t+1] = 1]; If[i < n, M[t, t+m] = 1-2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m-s, n*m-s}]]]]]; Table[Table[A[m, d-m], {m, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 26 2013, translated from Maple *)

A300056 Number of normal standard domino tableaux whose shape is the integer partition with Heinz number n.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 3, 1, 0, 0, 3, 0, 3, 2, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 4, 2, 0, 0, 1, 0, 0, 1, 0, 1, 6, 0, 0, 3, 1, 0, 4, 0, 5, 0, 0, 0, 1, 1, 8, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 6, 4, 0, 0, 1, 0, 6, 1, 0, 6, 5, 0, 6, 3, 1, 2, 10, 0, 0, 1, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. A standard domino tableau is a generalized Young tableau in which all rows and columns are weakly increasing and all regions are dominos. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(75) = 6 tableaux:
1 2 4   1 2 3   1 2 2   1 1 4   1 1 4   1 1 3
1 2 4   1 2 3   1 3 3   2 3 4   2 2 4   2 2 3
3 3     4 4     4 4     2 3     3 3     4 4
		

Crossrefs

A341741 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards: number of perfect matchings in the graph C_{2n} x C_k.

Original entry on oeis.org

2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 272, 224, 1156, 2, 200, 722, 3108, 1058, 6728, 2, 478, 3108, 9922, 39952, 5054, 39204, 2, 1156, 10082, 90176, 155682, 537636, 24200, 228488, 2, 2786, 39952, 401998, 3113860, 2540032, 7379216, 115934, 1331716, 2
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Comments

Dimer tilings of 2n x k toroidal grid.

Examples

			Square array begins:
  2,     8,    14,      36,       82,        200, ...
  2,    36,    50,     272,      722,       3108, ...
  2,   200,   224,    3108,     9922,      90176, ...
  2,  1156,  1058,   39952,   155682,    3113860, ...
  2,  6728,  5054,  537636,  2540032,  114557000, ...
  2, 39204, 24200, 7379216, 41934482, 4357599552, ...
		

Crossrefs

Columns 1..12 give A007395, A162484(2*n), A231087, A220864(2*n), A231485, A232804(2*n), A230033, A253678(2*n), A281583, A281679(2*n), A308761, A309018(2*n).
T(n,2*n) gives A335586.

Formula

T(n,k) = A341533(n,k)/2 + A341738(n,k) + 2 * ((k+1) mod 2) * A341739(n,ceiling(k/2)).
T(n, 2k) = T(k, 2n).
If k is odd, T(n,k) = A341533(n,k) = 2*A341738(n,k).

Extensions

New name from Andrey Zabolotskiy, Dec 26 2021

A028468 Number of perfect matchings in graph P_{6} X P_{n}.

Original entry on oeis.org

1, 1, 13, 41, 281, 1183, 6728, 31529, 167089, 817991, 4213133, 21001799, 106912793, 536948224, 2720246633, 13704300553, 69289288909, 349519610713, 1765722581057, 8911652846951, 45005025662792, 227191499132401, 1147185247901449, 5791672851807479
Offset: 0

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • R. P. Stanley, Enumerative Combinatorics I, p. 292.

Crossrefs

Row 6 of arrays A099390, A189006.
Column k=2 of A251072.
Cf. A005178.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1)/((1-x^2)*(x^3-5*x^2+6*x-1)*(x^3+ 6*x^2+5*x+1)) )); // G. C. Greubel, Nov 25 2018
    
  • Maple
    seq(coeff(series((1+2*x-x^2)*(x^4+2*x^3-3*x^2-2*x+1)/((x-1)*(x+1)*(x^3-5*x^2+6*x-1)*(x^3+6*x^2+5*x+1)),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Nov 23 2018
  • Mathematica
    a[n_] := Product[2(2 + Cos[(2 k Pi)/7] + Cos[(2 j Pi)/(n+1)]), {k, 1, 3}, {j, 1, n/2}] // Round;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 19 2018, after A099390 *)
    LinearRecurrence[{1, 20, 10, -38, -10, 20, -1, -1}, {1, 1, 13, 41, 281, 1183, 6728, 31529}, 30] (* Vincenzo Librandi, Nov 24 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(-(x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1)/((x-1)*(1+x)*(x^3-5*x^2+6*x-1)*(x^3+6*x^2+5*x+1))) \\ Altug Alkan, Mar 23 2016
    
  • Sage
    s=((x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1)/((1-x^2)*(x^3-5*x^2+6*x-1) *(x^3+6*x^2+5*x+1))).series(x,30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 25 2018

Formula

From N. J. A. Sloane, Feb 03 2009: (Start)
a(1) = 1,
a(2) = 13,
a(3) = 41,
a(4) = 281,
a(5) = 1183,
a(6) = 6728,
a(7) = 31529,
a(8) = 167089,
a(9) = 817991,
a(10) = 4213133,
a(11) = 21001799,
a(12) = 106912793,
a(13) = 536948224,
a(14) = 2720246633, and
a(n) = 40*a(n-2) - 416*a(n-4) + 1224*a(n-6) - 1224*a(n-8) + 416*a(n-10) - 40*a(n-12) + a(n-14). (From Faase's web page.) (End)
G.f.: (x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1) / ( (1-x) *(1+x) *(x^3-5*x^2+6*x-1) *(x^3+6*x^2+5*x+1) ).
a(n) = a(n-1)+20*a(n-2)+10*a(n-3)-38*a(n-4)-10*a(n-5)+20*a(n-6)-a(n-7)-a(n-8). - Sergey Perepechko, Sep 23 2018

A028470 Number of perfect matchings in graph P_{8} X P_{n}.

Original entry on oeis.org

1, 1, 34, 153, 2245, 14824, 167089, 1292697, 12988816, 108435745, 1031151241, 8940739824, 82741005829, 731164253833, 6675498237130, 59554200469113, 540061286536921, 4841110033666048, 43752732573098281, 393139145126822985, 3547073578562247994, 31910388243436817641
Offset: 0

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Row 8 of array A099390.

Programs

  • Maple
    a:= n-> (Matrix(16, (i, j)-> `if` (i=j-1, 1, `if` (i=16, [-1, 1, 76, 69, -921, -584, 4019, 829, -7012][min(j, 18-j)], 0)))^n. <>)[10, 1]: seq(a(n), n=0..50);  # Alois P. Heinz, Apr 14 2011
  • Mathematica
    a[n_] := Product[2(2+Cos[(2j Pi)/9] + Cos[(2k Pi)/(n+1)]), {k, 1, n/2}, {j, 1, 4}] // Round; Join[{1}, Array[a, 21]] (* Jean-François Alcover, Aug 11 2018; a(0)=1 prepended by Georg Fischer, Apr 17 2020 *)
  • PARI
    {a(n) = sqrtint(polresultant(polchebyshev(8, 2, x/2), polchebyshev(n, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020

Formula

Recurrence from Faase web site:
a(1) = 1,
a(2) = 34,
a(3) = 153,
a(4) = 2245,
a(5) = 14824,
a(6) = 167089,
a(7) = 1292697,
a(8) = 12988816,
a(9) = 108435745,
a(10) = 1031151241,
a(11) = 8940739824,
a(12) = 82741005829,
a(13) = 731164253833,
a(14) = 6675498237130,
a(15) = 59554200469113,
a(16) = 540061286536921,
a(17) = 4841110033666048,
a(18) = 43752732573098281,
a(19) = 393139145126822985,
a(20) = 3547073578562247994,
a(21) = 31910388243436817641,
a(22) = 287665106926232833093,
a(23) = 2589464895903294456096,
a(24) = 23333526083922816720025,
a(25) = 210103825878043857266833,
a(26) = 1892830605678515060701072,
a(27) = 17046328120997609883612969,
a(28) = 153554399246902845860302369,
a(29) = 1382974514097522648618420280,
a(30) = 12457255314954679645007780869,
a(31) = 112199448394764215277422176953,
a(32) = 1010618564986361239515088848178, and
a(n) = 153a(n-2) - 7480a(n-4) + 151623a(n-6) - 1552087a(n-8) + 8933976a(n-10) - 30536233a(n-12) + 63544113a(n-14) - 81114784a(n-16) + 63544113a(n-18) - 30536233a(n-20) + 8933976a(n-22) - 1552087a(n-24) + 151623a(n-26) - 7480a(n-28) + 153a(n-30) - a(n-32).
G.f.: (1 -43*x^2 -26*x^3 +360*x^4 +110*x^5 -1033*x^6 +1033*x^8 -110*x^9 -360*x^10 +26*x^11 +43*x^12 -x^14) /(1 -x -76*x^2 -69*x^3 +921*x^4 +584*x^5 -4019*x^6 -829*x^7 +7012*x^8 -829*x^9 -4019*x^10 +584*x^11 +921*x^12 -69*x^13 -76*x^14 -x^15 +x^16). - Sergey Perepechko, Nov 22 2012

Extensions

Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
a(0)=1 prepended by Seiichi Manyama, Apr 13 2020

A187618 Triangle T(m,n) read by rows: number of domino tilings of the 2m X 2n grid (0 <= m <= n).

Original entry on oeis.org

1, 1, 2, 1, 5, 36, 1, 13, 281, 6728, 1, 34, 2245, 167089, 12988816, 1, 89, 18061, 4213133, 1031151241, 258584046368, 1, 233, 145601, 106912793, 82741005829, 65743732590821, 53060477521960000, 1, 610, 1174500, 2720246633, 6675498237130, 16848161392724969, 43242613716069407953, 112202208776036178000000
Offset: 0

Views

Author

N. J. A. Sloane, Mar 12 2011

Keywords

Comments

A099390 is the main entry for this problem.

Examples

			Triangle begins:
1
1       2
1       5       36
1       13      281     6728
1       34      2245    167089  12988816
1       89      ...
		

Crossrefs

Extensions

More terms from Nathaniel Johnston, Mar 22 2011

A360499 Number of ways to tile an n X n square using rectangles with distinct dimensions.

Original entry on oeis.org

1, 1, 21, 269, 4489, 82981, 2995185, 118897973
Offset: 1

Views

Author

Scott R. Shannon, Feb 09 2023

Keywords

Comments

All possible tilings are counted, including those identical by symmetry. Note that distinct dimensions means that, for example, a 1 x 3 rectangle can only be used once, regardless of if it lies horizontally or vertically.

Examples

			a(1) = 1 as the only way to tile a 1 x 1 square is with a square with dimensions 1 x 1.
a(2) = 1 as the only way to tile a 2 x 2 square is with a square with dimensions 2 x 2.
a(3) = 21. The possible tilings, excluding those equivalent by symmetry, are:
.
  +---+---+---+   +---+---+---+   +---+---+---+   +---+---+---+
  |           |   |   |       |   |       |   |   |           |
  +           +   +---+---+---+   +---+---+   +   +---+---+---+
  |           |   |           |   |       |   |   |           |
  +           +   +           +   +       +   +   +           +
  |           |   |           |   |       |   |   |           |
  +---+---+---+   +---+---+---+   +---+---+---+   +---+---+---+
.
The first tiling can occur in 1 way, the second in 8 different ways, the third in 8 different ways and the fourth in 4 different ways, giving 21 ways in total.
		

Crossrefs

Cf. A360498 (oblongs), A182275 (not necessarily distinct dimensions), A004003, A099390, A065072, A233320, A230031.

A028471 Number of perfect matchings (or domino tilings) in the graph P_9 X P_2n.

Original entry on oeis.org

1, 55, 6336, 817991, 108435745, 14479521761, 1937528668711, 259423766712000, 34741645659770711, 4652799879944138561, 623139489426439754945, 83456125990631342400791, 11177167872295392172767936, 1496943834332592837945956455, 200483802581126644843760725601
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[?OddQ, ?OddQ] = 0;
    T[m_, n_] := Product[2(2+Cos[2 j Pi/(m+1)]+Cos[2 k Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}];
    a[n_] := T[2n, 9] // Round;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 28 2022 *)
  • PARI
    {a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(9, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020

Formula

a(n) = 209*a(n-1) - 11936*a(n-2) + 274208*a(n-3) - 3112032*a(n-4) + 19456019*a(n-5) - 70651107*a(n-6) + 152325888*a(n-7) - 196664896*a(n-8) + 152325888*a(n-9) - 70651107*a(n-10) + 19456019*a(n-11) - 3112032*a(n-12) + 274208*a(n-13) - 11936*a(n-14) + 209*a(n-15) - a(n-16). - Jay Anderson (horndude77(AT)gmail.com), Apr 07 2007
G.f.: (1 - 154x + 6777x^2 - 123961x^3 + 1132714x^4 - 5684515x^5 + 16401668x^6 - 27757938x^7 + 27757938*x^8 - 16401668x^9 + 5684515x^10 - 1132714x^11 + 123961x^12 -6777x^13 + 154x^14 - x^15)/(1 - 209x + 11936x^2 - 274208x^3 + 3112032x^4 - 19456019x^5 + 70651107x^6 - 152325888x^7 + 196664896x^8 - 152325888x^9 + 70651107x^10 -19456019x^11 + 3112032x^12 - 274208x^13 + 11936x^14 - 209x^15 + x^16). - Sergey Perepechko, Nov 23 2012

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

A300789 Heinz numbers of integer partitions whose Young diagram can be tiled by dominos.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 12, 13, 16, 19, 21, 22, 25, 27, 28, 29, 34, 36, 37, 39, 40, 43, 46, 48, 49, 52, 53, 55, 57, 61, 62, 63, 64, 70, 71, 75, 76, 79, 81, 82, 84, 85, 87, 88, 89, 90, 91, 94, 100, 101, 107, 108, 111, 112, 113, 115, 116, 117, 118, 121, 129, 130, 131
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
This sequence is conjectured to be the Heinz numbers of integer partitions in which the odd parts appear as many times in even as in odd positions.

Examples

			Sequence of integer partitions whose Young diagram can be tiled by dominos begins: (), (2), (11), (4), (22), (31), (211), (6), (1111), (8), (42), (51), (33), (222), (411).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
          `if`(n=1, 0, a(n-1)) while (l-> add(`if`(l[i]::odd,
           (-1)^i, 0), i=1..nops(l))<>0)(sort(map(i->
           numtheory[pi](i[1])$i[2], ifactors(k)[2]))) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 22 2018
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Total[(-1)^Flatten[Position[primeMS[#],_?OddQ]]]===0&] (* Conjectured *)
Previous Showing 21-30 of 51 results. Next