cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 53 results. Next

A036605 a(n) = a(n-2) + 2*a(n-3) + a(n-4).

Original entry on oeis.org

1, 4, 4, 7, 13, 19, 31, 52, 82, 133, 217, 349, 565, 916, 1480, 2395, 3877, 6271, 10147, 16420, 26566, 42985, 69553, 112537, 182089, 294628, 476716, 771343, 1248061, 2019403, 3267463, 5286868, 8554330, 13841197, 22395529, 36236725
Offset: 0

Views

Author

Keywords

References

  • D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.2, Eq. (25).

Crossrefs

Cf. A004695.

Programs

Formula

3 * [Fibonacci(n+2)/2] + 1. - Ralf Stephan, Dec 02 2004
a(n) = (A099837(n+2)+A022086(n+2))/2. G.f. ( -1-4*x-3*x^2-x^3 ) / ( (1+x+x^2)*(x^2+x-1) ). - R. J. Mathar, Mar 21 2011

A107751 a(n) = A107750(n+1) - A107750(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, May 23 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A107751[ nmax_ ] := Length /@ Split[ (Total[ 1 - IntegerDigits[ #1, 2 ] ] &) /@ Range[ 0, nmax ] ]; A107751[ 200 ] (* Peter Pein (petsie(AT)dordos.net), Oct 12 2007 *)
  • PARI
    up_to = 65537;
    A107751list(up_to) = { my(v=vector(up_to)); v[1]=v[2]=v[3]=v[4]=1; for(n=5,up_to,v[n] = (0^(v[n-1]-1) + 0^(v[n-2]-1))); (v); };
    v107751 = A107751list(up_to);
    A107751(n) = if(!n,1,v107751[n]); \\ Antti Karttunen, Dec 23 2018

Formula

a(n) = if n<=4 then 1 else 0^(a(n-1)-1) + 0^(a(n-2)-1).

A144429 Starts 1 2 3 then successive terms have differences 1 2 3.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 10, 12, 15, 16, 18, 21, 22, 24, 27, 28, 30, 33, 34, 36, 39, 40, 42, 45, 46, 48, 51, 52, 54, 57, 58, 60, 63, 64, 66, 69, 70, 72, 75, 76, 78, 81, 82, 84, 87, 88, 90, 93, 94, 96, 99, 100, 102, 105, 106, 108, 111, 112, 114, 117, 118, 120, 123, 124, 126, 129
Offset: 1

Views

Author

Milton L. Brown (miltbrown(AT)earthlink.net), Oct 13 2008

Keywords

Comments

Essentially the same sequence as A047231. - Stefan Steinerberger, Oct 17 2008

Crossrefs

Programs

  • Mathematica
    Join[{1,2},LinearRecurrence[{1,0,1,-1},{3,4,6,9},100]] (* or *) nxt[ {a_,b_,c_}]:= {c+1,c+3,c+6}; Flatten[NestList[nxt,{1,2,3},30]] (* Harvey P. Dale, Nov 23 2012 *)

Formula

G.f.: x(1+x)(1+x^2-x^3+2x^4)/((1+x+x^2)(1-x)^2). a(n)=a(n-3)+6, n>5. a(n) = 2n -11/3 +A099837(n+3)/3, n>2. [From R. J. Mathar, Oct 15 2008]

Extensions

Extended by R. J. Mathar, Oct 15 2008

A153349 Period 6: repeat [1, 7, 4, 4, 7, 1].

Original entry on oeis.org

1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4
Offset: 0

Views

Author

Paul Curtz, Dec 24 2008

Keywords

Comments

Also: the decimal expansion of 5287/30303. [R. J. Mathar, Jan 03 2009]

Crossrefs

Programs

Formula

G.f.: (x^4+6*x^3-2*x^2+6*x+1)/((1-x)*(x^2-x+1)*(1+x+x^2)). a(n) = 4 + 3*A099837(n+2)/2 + 3*A010892(n+4)/2. [R. J. Mathar, Jan 03 2009]
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = (8 - 3*cos(n*Pi/3) - 3*cos(2*n*Pi/3) + sqrt(3)*sin(n*Pi/3) + 3*sqrt(3)*sin(2*n*Pi/3))/2. (End)

Extensions

Extended by R. J. Mathar, Jan 03 2009

A318624 Number of 3-member subsets of [3*n] whose elements sum to a multiple of n.

Original entry on oeis.org

0, 1, 10, 30, 55, 91, 138, 190, 253, 327, 406, 496, 597, 703, 820, 948, 1081, 1225, 1380, 1540, 1711, 1893, 2080, 2278, 2487, 2701, 2926, 3162, 3403, 3655, 3918, 4186, 4465, 4755, 5050, 5356, 5673, 5995, 6328, 6672, 7021, 7381, 7752, 8128, 8515, 8913, 9316
Offset: 0

Views

Author

Alois P. Heinz, Aug 30 2018

Keywords

Examples

			a(1) = 1: {1,2,3}.
a(2) = 10: {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {2,4,6}, {3,4,5}, {3,5,6}.
a(3) = 30: {1,2,3}, {1,2,6}, {1,2,9}, {1,3,5}, {1,3,8}, {1,4,7}, {1,5,6}, {1,5,9}, {1,6,8}, {1,8,9}, {2,3,4}, {2,3,7}, {2,4,6}, {2,4,9}, {2,5,8}, {2,6,7}, {2,7,9}, {3,4,5}, {3,4,8}, {3,5,7}, {3,6,9}, {3,7,8}, {4,5,6}, {4,5,9}, {4,6,8}, {4,8,9}, {5,6,7}, {5,7,9}, {6,7,8}, {7,8,9}.
		

Crossrefs

Row n=3 of A318557.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,1,-2,1},{0,1,10,30,55,91},50] (* Harvey P. Dale, Mar 27 2019 *)

Formula

G.f.: -x*(3*x^4+4*x^3+11*x^2+8*x+1)/((x^2+x+1)*(x-1)^3).
a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5) for n>5.
3*a(n) = 5+2*A099837(n)+27*n*(n-1)/2 for n>0. - R. J. Mathar, Sep 02 2018

A014679 G.f.: (1+x^3)^2/((1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 0, 1, 3, 2, 3, 6, 6, 7, 10, 11, 13, 16, 17, 20, 24, 25, 28, 33, 35, 38, 43, 46, 50, 55, 58, 63, 69, 72, 77, 84, 88, 93, 100, 105, 111, 118, 123, 130, 138, 143, 150, 159, 165, 172, 181, 188, 196, 205, 212, 221, 231, 238, 247, 258, 266, 275, 286, 295, 305
Offset: 0

Views

Author

Keywords

Comments

Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of M_12.

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 255, Theorem 3.20, where the series is given in the form GF_2 (see formula line).

Programs

  • Magma
    I:=[1,0,1,3,2,3,6]; [n le 7 select I[n] else 2*Self(n-1)- 2*Self(n-2)+3*Self(n-3)-3*Self(n-4)+2*Self(n-5)-2*Self(n-6)+Self(n-7): n in [1..60]]; // Vincenzo Librandi, Jul 19 2015
    
  • Maple
    (1+x^3)^2/((1-x^2)*(1-x^3)*(1-x^4));
  • Mathematica
    CoefficientList[Series[(1+x^3)^2/((1-x^2)*(1-x^3)*(1-x^4)), {x,0,60}],x] (* Harvey P. Dale, Mar 17 2011 *)
    LinearRecurrence[{2,-2,3,-3,2,-2,1},{1,0,1,3,2,3,6},60] (* Harvey P. Dale, Apr 10 2012 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 1,-2,2,-3,3,-2,2]^n*[1;0;1;3;2;3;6])[1,1] \\ Charles R Greathouse IV, Feb 10 2017

Formula

Can also be written as GF_2 = (1 + x^2 + 3*x^3 + x^4 + 3*x^5 + 4*x^6 + 2*x^7 + 4*x^8 + 3*x^9 + x^10 + 3*x^11 + x^12 + x^14 ) / ( (1-x^4)*(1-x^6)*(1-x^7)).
G.f.: (1-x+x^2)^2/((1-x)^3*(1+x^2)(1+x+x^2)). a(n)=n^2/12+n/4+13/36-A057077(n)/4+4*A099837(n+3)/9. - R. J. Mathar, Jan 11 2009
a(0)=1, a(1)=0, a(2)=1, a(3)=3, a(4)=2, a(5)=3, a(6)=6, a(n)= 2*a(n-1)- 2*a(n-2)+3*a(n-3)-3*a(n-4)+2*a(n-5)-2*a(n-6)+a(n-7). - Harvey P. Dale, Apr 10 2012

A025771 Expansion of 1/((1-x)*(1-x^3)*(1-x^11)).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 42, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 82, 84, 86, 89
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of partitions of n into parts 1, 3, and 11. - Joerg Arndt, Aug 20 2025

Programs

Formula

a(n) = +a(n-1) +a(n-3) -a(n-4) +a(n-11) -a(n-12) -a(n-14) +a(n-15). - R. J. Mathar, Aug 21 2014
a(n) = floor((n^2 + 15*n + 78)/66). - Hoang Xuan Thanh, Aug 18 2025

A089108 Convoluted convolved Fibonacci numbers G_4^(r).

Original entry on oeis.org

3, 5, 7, 10, 13, 16, 20, 24, 28, 33, 38, 43, 49, 55, 61, 68, 75, 82, 90, 98, 106, 115, 124, 133, 143, 153, 163, 174, 185, 196, 208, 220, 232, 245, 258, 271, 285, 299, 313, 328, 343, 358, 374, 390, 406, 423, 440, 457, 475, 493, 511, 530, 549, 568, 588, 608, 628
Offset: 1

Views

Author

N. J. A. Sloane, Dec 05 2003

Keywords

Programs

  • Maple
    with(numtheory): f := z->1/(1-z-z^2): m := proc(r,j) d := divisors(r): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]),i=1..nops(d)): Wser := simplify(series(W,z=0,80)): coeff(Wser,z^j) end: seq(m(r,4),r=1..60);
  • Mathematica
    LinearRecurrence[{2, -1, 1, -2, 1}, {3, 5, 7, 10, 13}, 60] (* Jean-François Alcover, Nov 28 2017 *)

Formula

G.f.: x*(3 - x - 2*x^3 + x^4)/((1 - x^3)*(1 - x)^2).
9*a(n) = 11 +27*n/2 +3*n^2/2 -A099837(n+3). - R. J. Mathar, Jan 09 2024

Extensions

Edited by Emeric Deutsch, Mar 06 2004

A103819 Whitney transform of Jacobsthal numbers.

Original entry on oeis.org

0, 1, 3, 8, 23, 63, 172, 471, 1287, 3516, 9607, 26247, 71708, 195911, 535239, 1462300, 3995079, 10914759, 29819676, 81468871, 222577095, 608091932, 1661338055, 4538859975, 12400396060, 33878512071, 92557816263, 252872656668
Offset: 0

Views

Author

Paul Barry, Feb 16 2005

Keywords

Comments

The Whitney transform maps the sequence with g.f. g(x) to that with g.f. (1/(1-x))*g(x(1+x)).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,2,1,-2,-2},{0,1,3,8,23},30] (* Harvey P. Dale, Nov 02 2024 *)

Formula

G.f.: x(1+x)/((1-x)(1+x+x^2)(1-2x-2x^2)).
a(n) = 2a(n-1)+2a(n-2)+a(n-3)-2a(n-4)-2a(n-5).
a(n) = Sum_{k=0..n} Sum_{i=0..n} C(k, i-k)*A001045(k).
9*a(n) = -2 +2*(A002605(n)+2*A002605(n+1))-A099837(n+3). - R. J. Mathar, Oct 23 2011

A173714 Floor(Lucas(n+1)/2), Lucas(n) = A000032(n).

Original entry on oeis.org

0, 1, 2, 3, 5, 9, 14, 23, 38, 61, 99, 161, 260, 421, 682, 1103, 1785, 2889, 4674, 7563, 12238, 19801, 32039, 51841, 83880, 135721, 219602, 355323, 574925, 930249, 1505174
Offset: 0

Views

Author

Gary Detlefs, Nov 25 2010

Keywords

Comments

Sequences of the form a(0)=1, a(1)=b,
a(n) = a(n-1) + a(n-2) + 1 if n mod 3 =2, else
a(n) = a(n-1) + a(n-2) have a closed form of
a(n) = F(n-1)*a + F(n)*b + floor(F(n+1)/2),
where F(n)= Fibonacci(n) = A000045(n), floor(F(n+1)/2) = A004695(n+1).
We can generalize the definition of this sequence by changing the added 1 to any value of k and changing the last term of the formula to floor(F(n+1)/2)*k.
Two variants: if we add the constant at n mod 3 = 0, then a(n)=F(n-1)*a + F(n)*b + floor(F(n)/2), and if for n mod 3 =1, then a(n)=F(n-1)*a + F(n)*b + floor(F(n-1)/2).

Examples

			a(5) = a(4) + a(3) + 1 = 5 +3 +1 =9 because 5 mod 3 = 2.
a(6) = a(5) + a(4) = 9 +5 =14 because 6 mod 3 <>2.
		

Programs

  • Magma
    [Floor(Lucas(n+1)/2): n in [0..50]]; // Vincenzo Librandi, Apr 24 2011
  • Maple
    with(combinat):
    g:=(a,b,n)->fibonacci(n-1)*a+fibonacci(n)*b + floor(fibonacci(n+1)/2):
    seq(g(0,1,n),n=0..30)
  • Mathematica
    Table[Floor[LucasL[n + 1]/2], {n,0,50}] (* G. C. Greubel, Nov 24 2016 *)

Formula

a(0)= 0, a(1)=1, a(n)=a(n-1)+a(n-2)+1 if n mod 3 =2, else a(n)=a(n-1)+a(n-2).
G.f.: x*(1+x-x^3)/[(1-x-x^2)*(1-x^3)].
a(n) = a(n-1) +a(n-2) +(1+(-1)^Fib(n+1))/2.
a(n) = A000204(n+1)/2 + A099837(n+1)/6 - 1/3. - R. J. Mathar, Nov 26 2010
a(n) = Fibonacci(n) + floor(Fibonacci(n+1)/2). - Gary Detlefs, Dec 10 2010
Previous Showing 41-50 of 53 results. Next