cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A213752 Rectangular array: (row n) = b**c, where b(h) = 2*h-1, c(h) = b(n-1+h), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 6, 3, 19, 14, 5, 44, 37, 22, 7, 85, 76, 55, 30, 9, 146, 135, 108, 73, 38, 11, 231, 218, 185, 140, 91, 46, 13, 344, 329, 290, 235, 172, 109, 54, 15, 489, 472, 427, 362, 285, 204, 127, 62, 17, 670, 651, 600, 525, 434, 335, 236, 145, 70, 19, 891, 870, 813
Offset: 1

Views

Author

Clark Kimberling, Jun 20 2012

Keywords

Comments

Principal diagonal: A100157
Antidiagonal sums: A071238
row 1, (1,3,5,7,9,...)**(1,3,5,7,9,...): A005900
row 2, (1,3,5,7,9,...)**(3,5,7,9,11,...): A143941
row 3, (1,3,5,7,9,...)**(5,7,9,11,13,...): (2*k^3 + 12*k^2 + k)/6
row 4, (1,3,5,7,9,...)**(7,9,11,13,15,,...): (2*k^3 + 18*k^2 + k)/6
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...6....19...44....85....146
3...14...37...76....135...218
5...22...55...108...185...290
7...30...73...140...235...362
9...38...91...172...285...434
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := 2 n - 1; c[n_] := 2 n - 1;
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213752 *)
    Table[t[n, n], {n, 1, 40}] (* A100157 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A071238 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = 2*n - 1 + 2*x - (2*n - 3)*x^2 and g(x) = (1 - x )^4.

A329070 Array read by ascending antidiagonals: T(n, k) = (k*n)!/(k^n*(1/k)_n) with (n >= 0 and k >= 1), where (x)_n = x*(x + 1)*...*(x + n - 1) is the Pochhammer symbol.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 8, 6, 1, 1, 48, 180, 24, 1, 1, 384, 12960, 8064, 120, 1, 1, 3840, 1710720, 10644480, 604800, 720, 1, 1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1, 1, 645120, 109930867200, 244635697152000, 2303884477440000, 70355755008000, 10897286400, 40320, 1
Offset: 0

Views

Author

Petros Hadjicostas, Nov 03 2019

Keywords

Comments

For information about the function W_m(z) = 1 + Sum_{n >= 0} (-1)^(n+1)* z^((m+2)*n + 1)/(T(n, m+2)*((m + 2)*n + 1)) (mentioned in the Formula section below), see Theorem 3.2 in Elizalde and Noy (2003) with u = 0 and m and a in the theorem equal to our m + 1. See also the documentation of array A327722.
By using the ratio test and the Stirling approximation to the gamma function, we may show that the radius of convergence of the power series for W_m(z) is infinity (for each m >= 0). Thus, the function W_m(z) (as defined by the above power series) is entire.
If we define S(m,s) = T(n-s, s+1) for m >= 0 and 0 <= s <= m, we get the triangular array that appears in the Example section below.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
  1,  1,     1,        1,           1,              1,  ...
  1,  2,     6,       24,         120,            720,  ...
  1,  8,   180,     8064,      604800,       68428800, ...
  1, 48, 12960, 10644480, 19813248000, 70355755008000, ...
  ...
Triangular array S(m,s) = T(m-s, s+1) (with rows m >= 0 and columns s >= 0):
  1;
  1,     1;
  1,     2,         1;
  1,     8,         6,           1;
  1,    48,       180,          24,           1;
  1,   384,     12960,        8064,         120,        1;
  1,  3840,   1710720,    10644480,      604800,      720,    1;
  1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1;
  ...
		

Crossrefs

Rows include A000012 (n = 0), A000142 (n = 1), A060593 (n = 2).
Columns include A000012 (k = 1), A000165 (k = 2), A176730 (k = 3).
Ratios T(n+1,k)/(k!*T(n,k)) include A000012 (k = 1), A000027 (k = 2), A000326 (k = 3), A100157 (k = 4), A234043 (k = 5).

Programs

  • Maple
    A := (n, k) -> `if`(k=0, 1, (GAMMA(1/k)*GAMMA(k*n+1))/(GAMMA(n+1/k)*k^n)):
    seq(seq(A(n-k-1, k), k=1..n-1), n=0..10); # Peter Luschny, Nov 04 2019

Formula

T(0,k) = 1, T(1,k) = k!, and T(2,k) = (2*k)!/(k + 1) for k >= 1.
T(n,1) = 1, T(n,2) = (2*n)!!, and T(n,3) is related to the Airy functions (see the documentation of A176730).
T(n+1,k) = (k-1)! * binomial(k*(n+1), k-1) * T(n,k) for n >= 0 and k >= 1.
T(n+1,k)/(k! * T(n,k)) = Cat(n+1, k), where Cat(d, k) = binomial(k*d, k)/(k * (d - 1) + 1) is a Fuss-Catalan number; see Theorem 1.2 in Schuetz and Whieldon (2014).
If F(k,z) = Sum_{n >= 0} z^(k*n)/T(n,k), then F(k,z) satisfies the o.d.e. F^(k-1)(k,z) - z*F(k,z) = 0.
If W_m(z) = 1 + Sum_{n >= 0} (-1)^(n+1)* z^((m+2)*n + 1)/(T(n, m+2)*((m + 2)*n + 1)), then 1/W_m(z) is the e.g.f. of row m of A327722(m,n), which counts permutations of [n] that avoid the consecutive pattern 12...(m+1)(m+3)(m+2) (or equivalently, the consecutive pattern (m+3)(m+2)...(3)(1)(2)).
The function W_m(z) satisfies the o.d.e. W_m^(m+2)(z) + z*W_m'(z) = 0 with W_m(0) = 1, W_m'(0) = -1, and W_m^(s)(0) = 0 for s = 2..(m + 1).

A100156 Structured truncated tetrahedral numbers.

Original entry on oeis.org

1, 12, 44, 108, 215, 376, 602, 904, 1293, 1780, 2376, 3092, 3939, 4928, 6070, 7376, 8857, 10524, 12388, 14460, 16751, 19272, 22034, 25048, 28325, 31876, 35712, 39844, 44283, 49040, 54126, 59552, 65329, 71468, 77980, 84876, 92167, 99864, 107978, 116520, 125501, 134932
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100155, A100157 for adjacent structured Archimedean solids; A100145 for more on structured polyhedral numbers. Similar to truncated tetrahedral numbers A005906.

Programs

  • Magma
    [(1/6)*(11*n^3-3*n^2-2*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
    
  • Mathematica
    Table[(11n^3-3n^2-2n)/6,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,12,44,108},40] (* Harvey P. Dale, Sep 28 2011 *)
  • PARI
    vector(50, n, (11*n^3 - 3*n^2 - 2*n)/6) \\ G. C. Greubel, Oct 18 2018

Formula

a(n) = (1/6)*(11*n^3 - 3*n^2 - 2*n).
From Harvey P. Dale, Sep 28 2011: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=12, a(2)=44, a(3)=108.
G.f.: x*(2*x*(x+4)+1)/(x-1)^4. (End)
E.g.f.: x*(6 + 30*x + 11*x^2)*exp(x)/6. - G. C. Greubel, Oct 18 2018

A100171 Structured triakis octahedral numbers (vertex structure 4).

Original entry on oeis.org

1, 14, 60, 160, 335, 606, 994, 1520, 2205, 3070, 4136, 5424, 6955, 8750, 10830, 13216, 15929, 18990, 22420, 26240, 30471, 35134, 40250, 45840, 51925, 58526, 65664, 73360, 81635, 90510, 100006, 110144
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100157 = alternate vertex; A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(21*n^3-27*n^2+12*n): n in [1..40]]; // Vincenzo Librandi, Jul 27 2011
  • Mathematica
    Table[(21n^3-27n^2+12n)/6,{n,40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{1,14,60,160},40] (* Harvey P. Dale, Jun 28 2011 *)

Formula

a(n)=(1/6)*(21*n^3-27*n^2+12*n).
a(0)=1, a(1)=14, a(2)=60, a(3)=160, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Jun 28 2011
G.f.: (10*x^2+10*x+1)/(x-1)^4. - Harvey P. Dale, Jun 28 2011

A258582 a(n) = n*(2*n + 1)*(4*n + 1)/3.

Original entry on oeis.org

0, 5, 30, 91, 204, 385, 650, 1015, 1496, 2109, 2870, 3795, 4900, 6201, 7714, 9455, 11440, 13685, 16206, 19019, 22140, 25585, 29370, 33511, 38024, 42925, 48230, 53955, 60116, 66729, 73810, 81375, 89440, 98021, 107134, 116795, 127020, 137825, 149226, 161239, 173880
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2015

Keywords

Comments

First bisection of the square pyramidal numbers (A000330).

Crossrefs

Cf. A000330, A001477, A005408, A016813, A053126 (partial sums), A100157.

Programs

  • Magma
    [n*(2*n+1)*(4*n+1)/3: n in [0..50]]; // Wesley Ivan Hurt, Nov 17 2015
  • Maple
    A258582:=n->n*(2*n + 1)*(4*n + 1)/3: seq(A258582(n), n=0..50); # Wesley Ivan Hurt, Nov 17 2015
  • Mathematica
    Table[(1/3) n (2 n + 1) (4 n + 1), {n, 0, 45}]
  • PARI
    vector(100, n, n--; n*(2*n+1)*(4*n+1)/3) \\ Altug Alkan, Nov 06 2015
    
  • PARI
    concat(0, Vec((5*x + 10*x^2 + x^3)/(1 - x)^4 + O(x^50))) \\ Altug Alkan, Nov 06 2015
    

Formula

G.f.: x*(5 + 10*x + x^2)/(1 - x)^4.
a(n) = A000330(2*n).
Sum_{n>0} 1/a(n) = 3*(6 - Pi - 4*log(2)) = 0.25745587...
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Nov 18 2015
a(n) = A006918(4*n-1) = A053307(4*n-1) = A228706(4*n-1) for n>0. - Bruno Berselli, Nov 18 2015
a(n) = Sum_{k=1..2*n} k^2 (see the first comment). E.g.f. exp(x)*(5*x+ 20*x^2/2+16*x^3/3!). - Wolfdieter Lang, Mar 13 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) + 6*sqrt(2)*log(1+sqrt(2)) + 3*(sqrt(2)-1/2)*Pi - 18. - Amiram Eldar, Sep 17 2022

A316224 a(n) = n*(2*n + 1)*(4*n + 1).

Original entry on oeis.org

0, 15, 90, 273, 612, 1155, 1950, 3045, 4488, 6327, 8610, 11385, 14700, 18603, 23142, 28365, 34320, 41055, 48618, 57057, 66420, 76755, 88110, 100533, 114072, 128775, 144690, 161865, 180348, 200187, 221430, 244125, 268320, 294063, 321402, 350385, 381060, 413475, 447678, 483717
Offset: 0

Views

Author

Bruno Berselli, Jun 27 2018

Keywords

Comments

Sums of the consecutive integers from A000384(n) to A000384(n+1)-1. This is the case s=6 of the formula n*(n*(s-2) + 1)*(n*(s-2) + 2)/2 related to s-gonal numbers.
The inverse binomial transform is 0, 15, 60, 48, 0, ... (0 continued).

Examples

			Row sums of the triangle:
|  0 |  ................................................................. 0
|  1 |  2  3  4  5  .................................................... 15
|  6 |  7  8  9 10 11 12 13 14  ........................................ 90
| 15 | 16 17 18 19 20 21 22 23 24 25 26 27  ........................... 273
| 28 | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44  ............... 612
| 45 | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65  .. 1155
...
where:
. first column is A000384,
. second column is A130883 (without 1),
. third column is A033816,
. diagonal is A014106,
. 0, 2, 8, 18, 32, 50, ... are in A001105.
		

Crossrefs

First bisection of A059270 and subsequence of A034828, A047866, A109900, A290168.
Sums of the consecutive integers from P(s,n) to P(s,n+1)-1, where P(s,k) is the k-th s-gonal number: A027480 (s=3), A055112 (s=4), A228888 (s=5).

Programs

  • GAP
    List([0..40], n -> n*(2*n+1)*(4*n+1));
    
  • Julia
    [n*(2*n+1)*(4*n+1) for n in 0:40] |> println
  • Magma
    [n*(2*n+1)*(4*n+1): n in [0..40]];
    
  • Maple
    seq(n*(2*n+1)*(4*n+1),n=0..40); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Table[n (2 n + 1) (4 n + 1), {n, 0, 40}]
  • Maxima
    makelist(n*(2*n+1)*(4*n+1), n, 0, 40);
    
  • PARI
    vector(40, n, n--; n*(2*n+1)*(4*n+1))
    
  • Python
    [n*(2*n+1)*(4*n+1) for n in range(40)]
    
  • Sage
    [n*(2*n+1)*(4*n+1) for n in (0..40)]
    

Formula

O.g.f.: 3*x*(5 + 10*x + x^2)/(1 - x)^4.
E.g.f.: x*(15 + 30*x + 8*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*A258582(n).
a(n) = -3*A100157(-n).
Sum_{n>0} 1/a(n) = 2*(3 - log(4)) - Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 2*sqrt(2)*log(1+sqrt(2)) + (sqrt(2)-1/2)*Pi - 6. - Amiram Eldar, Sep 17 2022

A227300 Rising diagonal sums of triangle of Fibonacci polynomials (rows displayed as centered text).

Original entry on oeis.org

1, 2, 2, 3, 7, 11, 16, 28, 48, 77, 126, 211, 349, 573, 947, 1568, 2588, 4271, 7058, 11661, 19256, 31804, 52538, 86779, 143329, 236744, 391046, 645900, 1066850, 1762163, 2910634, 4807590, 7940870, 13116238, 21664568, 35784145, 59105987, 97627533, 161254953, 266350689
Offset: 1

Views

Author

John Molokach, Jul 09 2013

Keywords

Comments

Rising diagonal sums of triangle A011973, taken with rows as centered text.

Examples

			a(1)  = 1;
a(2)  = 1 +  1;
a(3)  = 1 +  1;
a(4)  = 1 +  1 +  1;
a(5)  = 1 +  1 +  3 +  2;
a(6)  = 1 +  1 +  5 +  4;
a(7)  = 1 +  1 +  7 +  6 +  1;
a(8)  = 1 +  1 +  9 +  8 +  6 +  3;
a(9)  = 1 +  1 + 11 + 10 + 15 + 10;
a(10) = 1 +  1 + 13 + 12 + 28 + 21 +  1.
		

Crossrefs

Cf. A011973 (triangle), A000045 (row sums of triangle), A005314 (falling diagonal sums of triangle). Expansion of terms begin with A055624 at a(1) and adds A016813 at a(4), A016754 at a(7), and A100157 at a(10).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 2, 0, 0, -1}, {1, 2, 2, 3, 7, 11}, 40] (* T. D. Noe, Jul 11 2013 *)
  • PARI
    a(n) = if(n<=1, 1, sum(k=0, floor((n-1)/3), binomial(2*n-2-5*k,k)+binomial(2*n-1-5*k,k)) ); \\ Joerg Arndt, Jul 11 2013

Formula

a(n) = Sum_{k=0..floor((n-1)/3)} (binomial(2*n-2-5*k,k) + binomial(2*n-3-5*k,k)) for n >= 2; a(1)=1. - John Molokach, Jul 11 2013
a(n) = a(n-1) + 2*a(n-3) - a(n-6), starting with {1, 2, 2, 3, 7, 11}. - T. D. Noe, Jul 11 2013
G.f.: x*(1+x-x^3)/(1-x-2*x^3+x^6) - John Molokach, Jul 15 2013
a(n) = Sum_{k=0..floor((2n-1)/3)} binomial(2n-k-2-3*floor(k/2),floor(k/2)). - John Molokach, Jul 29 2013

A269845 Irregular triangle read by rows: T(n,k) = (k/2+1/2)^2 if odd-k otherwise T(n,k) = (n-k/2)^2 where n >= 1, k = 0..2*n-1.

Original entry on oeis.org

1, 1, 4, 1, 1, 4, 9, 1, 4, 4, 1, 9, 16, 1, 9, 4, 4, 9, 1, 16, 25, 1, 16, 4, 9, 9, 4, 16, 1, 25, 36, 1, 25, 4, 16, 9, 9, 16, 4, 25, 1, 36, 49, 1, 36, 4, 25, 9, 16, 16, 9, 25, 4, 36, 1, 49, 64, 1, 49, 4, 36, 9, 25, 16, 16, 25, 9, 36, 4, 49, 1, 64, 81, 1, 64, 4, 49, 9, 36, 16, 25, 25, 16, 36, 9, 49, 4, 64, 1, 81, 100, 1, 81, 4, 64, 9, 49, 16, 36, 25, 25, 36, 16, 49
Offset: 1

Views

Author

Kival Ngaokrajang, Mar 06 2016

Keywords

Comments

Inspired by A268317, but change to n+1 X n instead of Fib(n+1) X Fib(n).
There are triangles appearing along main diagonal. If the area of the smallest triangles are defined as 1, then the areas of all other triangles seem to be square numbers. Conjectures: (i) Odd terms of row sum/2 is A100157. (ii) Even terms of row sum/2 is A258582. See illustration in links.

Examples

			Irregular triangle begins:
n\k 0  1   2  3   4  5   6   7   8   9  10 11 12  13 14  15 ...
1   1, 1
2   4, 1,  1, 4
3   9, 1,  4, 4,  1, 9
4  16, 1,  9, 4,  4, 9,  1, 16
5  25, 1, 16, 4,  9, 9,  4, 16,  1, 25
6  36, 1, 25, 4, 16, 9,  9, 16,  4, 25, 1, 36
7  49, 1, 36, 4, 25, 9, 16, 16,  9, 25, 4, 36, 1, 49
8  64, 1, 49, 4, 36, 9, 25, 16, 16, 25, 9, 36, 4, 49, 1, 64
...
		

Crossrefs

Programs

  • Mathematica
    Table[If[OddQ@ k, (k/2 + 1/2)^2, (n - k/2)^2], {n, 8}, {k, 0, 2 n - 1}] // Flatten (* Michael De Vlieger, Apr 01 2016 *)
  • PARI
    for (n = 1, 20, for (k = 0, 2*n-1, if (Mod(k,2)==0, t = (n-k/2)^2, t = (k/2+1/2)^2); print1(t, ", ")))

Formula

T(n,k) = (k/2+1/2)^2 if odd-k, T(n,k) = (n-k/2)^2 if even-k; n >= 1, k = 0..2*n-1.

A270309 Irregular triangle read by rows: T(n,k) = ((n-k)+1)^2 if odd-n and odd-k; T(n,k) = k^2 if odd-n and even-k; T(n,k) = (n/2-(k/2-1/2))^2 if even-n and odd-k; T(n,k) = (k/2+1)^2 if even-n and even-k; where n >= 1, k = 1..2*n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 9, 4, 1, 1, 4, 9, 4, 1, 1, 4, 4, 1, 1, 4, 25, 4, 9, 16, 1, 1, 16, 9, 4, 25, 9, 1, 4, 4, 1, 9, 9, 1, 4, 4, 1, 9, 49, 4, 25, 16, 9, 36, 1, 1, 36, 9, 16, 25, 4, 49, 16, 1, 9, 4, 4, 9, 1, 16, 16, 1, 9, 4, 4, 9, 1, 16, 81, 4, 49, 16, 25, 36, 9, 64, 1, 1, 64, 9, 36, 25, 16, 49, 4, 81, 25, 1, 16, 4, 9, 9, 4, 16, 1, 25, 25, 1, 16, 4, 9, 9, 4, 16, 1, 25
Offset: 1

Views

Author

Kival Ngaokrajang, Mar 15 2016

Keywords

Comments

Refer to A269845, but change to n+2 X n instead of n+1 X n.
There are triangles appearing along main diagonal. If the area of the smallest triangles are defined as 1, then the areas of all other triangles seem to be square numbers. Conjectures: (i) Even terms of row sum is A002492. (ii) Odd terms of row sum/2 is A100157. See illustration in links.

Examples

			Irregular triangle begins:
n\k  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  ...
1    1,  1
2    1,  1,  1,  1
3    9,  4,  1,  1,  4,  9
4    4,  1,  1,  4,  4,  1,  1,  4
5   25,  4,  9, 16,  1,  1, 16,  9,  4, 25
6    9,  1,  4,  4,  1,  9,  9,  1,  4,  4,  1,  9
7   49,  4, 25, 16,  9, 36,  1,  1, 36,  9, 16, 25,  4, 49
8   16,  1,  9,  4,  4,  9,  1, 16, 16,  1,  9,  4,  4,  9,  1, 16
...
		

Crossrefs

A137211 Generalized or s-Catalan numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 5, 12, 22, 1, 14, 55, 140, 285, 1, 42, 273, 969, 2530, 5481, 1, 132, 1428, 7084, 23751, 62832, 141778, 1, 429, 7752, 53820, 231880, 749398, 1997688, 4638348, 1, 1430, 43263, 420732, 2330445, 9203634, 28989675, 77652024
Offset: 1

Views

Author

Roger L. Bagula, Mar 05 2008

Keywords

Comments

From R. J. Mathar, May 04 2008: (Start)
This is a triangular section of Stanica's array of s-Catalan numbers, with rows A000108, A001764, A002293-A002296, A007556, A062994, A059968,... read along diagonals in A062993 and A070914:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, ...
1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715, ...
1, 1, 4, 22, 140, 969, 7084, 53820, 420732, 3362260, 27343888, ...
1, 1, 5, 35, 285, 2530, 23751, 231880, 2330445, 23950355, 250543370, ...
1, 1, 6, 51, 506, 5481, 62832, 749398, 9203634, 115607310, 1478314266, ...
1, 1, 7, 70, 819, 10472, 141778, 1997688, 28989675, 430321633, 6503352856, ...
1, 1, 8, 92, 1240, 18278, 285384, 4638348, 77652024, 1329890705, 23190029720, ...
1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, 3573805950, 70625252863, ...
1, 1, 10, 145, 2470, 46060, 910252, 18730855, 397089550, 8612835715, 190223180840, ...
(End)
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Whieldon and Schuetz link for this interpretation and others), so the (k+1)-th column of Stanica's array enumerates the number of (n+1)-gon partitions of a (k*(n-1)+2)-gon. Cf. A000326 (k=3), A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014

Examples

			{1},
{1, 1},
{1, 2, 3},
{1, 5, 12, 22},
{1, 14, 55, 140, 285},
{1, 42, 273, 969, 2530, 5481},
{1, 132, 1428, 7084, 23751, 62832, 141778},
{1, 429, 7752, 53820, 231880, 749398, 1997688, 4638348}
		

Programs

  • Mathematica
    t[n_, m_] := Binomial[m*n, n]/((m - 1)*n + 1); a = Table[Table[t[n, m], {m, 1, n + 1}], {n, 0, 10}]; Flatten[a]

Formula

T(n,m) = binomial(m*n,n)/((m-1)*n+1).

Extensions

Edited by N. J. A. Sloane, May 16 2008
Previous Showing 11-20 of 20 results.