A365825 Number of integer partitions of n that are not of length 2 and do not contain n/2.
1, 1, 1, 2, 2, 5, 6, 12, 14, 26, 31, 51, 61, 95, 114, 169, 202, 289, 347, 481, 576, 782, 936, 1244, 1487, 1946, 2323, 2997, 3570, 4551, 5414, 6827, 8103, 10127, 11997, 14866, 17575, 21619, 25507, 31166, 36692, 44563, 52362, 63240, 74152, 89112, 104281, 124731
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 14 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (111) (1111) (221) (222) (322) (332) (311) (411) (331) (521) (2111) (2211) (421) (611) (11111) (21111) (511) (2222) (111111) (2221) (3221) (3211) (3311) (4111) (5111) (22111) (22211) (31111) (32111) (211111) (221111) (1111111) (311111) (2111111) (11111111)
Crossrefs
The complement is counted by A238628.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[#]!=2&&FreeQ[#,n/2]&]],{n,0,15}]
-
Python
from sympy import npartitions def A365825(n): return npartitions(n)-(m:=n>>1)-(0 if n&1 else npartitions(m)-1) # Chai Wah Wu, Sep 23 2023
Formula
Extensions
a(31)-a(47) from Chai Wah Wu, Sep 23 2023
Comments