A038699 Riesel problem: Smallest prime of form n*2^m-1, m >= 0, or 0 if no such prime exists.
3, 3, 2, 3, 19, 5, 13, 7, 17, 19, 43, 11, 103, 13, 29, 31, 67, 17, 37, 19, 41, 43, 367, 23, 199, 103, 53, 223, 463, 29, 61, 31, 131, 67, 139, 71, 73, 37, 311, 79, 163, 41, 5503, 43, 89, 367, 751, 47, 97, 199, 101, 103, 211, 53, 109, 223, 113, 463, 241663, 59, 487, 61
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..650
- Hans Riesel, Some large prime numbers. Translated from the Swedish original (Några stora primtal, Elementa 39 (1956), pp. 258-260) by Lars Blomberg.
Crossrefs
Programs
-
Haskell
a038699 = until ((== 1) . a010051) ((+ 1) . (* 2)) . (subtract 1) -- Reinhard Zumkeller, Mar 05 2012
-
Mathematica
getm[n_]:=Module[{m=0},While[!PrimeQ[n 2^m-1],m++];n 2^m-1]; Array[getm,80] (* Harvey P. Dale, Apr 24 2011 *)
Extensions
More terms from Henry Bottomley, Apr 24 2001
Comments