cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A238936 Powers of 6 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 6, 36, 216, 1296, 7776, 46656, 279936, 1679616, 2176782336, 16926659444736, 4738381338321616896, 36845653286788892983296, 17324272922341479351919144385642496
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2014

Keywords

Comments

Conjectured to be finite and complete. See the OEIS wiki page for further information, references and links.

Crossrefs

Programs

  • Mathematica
    Select[6^Range[0,50],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Dec 03 2020 *)
  • PARI
    for(n=0,99,vecmin(digits(6^n))&& print1(6^n","))

Formula

a(n)=6^A030702(n).

Extensions

Keyword:fini and keyword:full removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A238940 Powers of 4 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 4, 16, 64, 256, 16384, 65536, 262144, 16777216, 268435456, 4294967296, 17179869184, 68719476736, 4722366482869645213696, 75557863725914323419136, 77371252455336267181195264
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2014

Keywords

Comments

Conjectured to be finite and complete. See the OEIS wiki page for further information, references and links.

Crossrefs

For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A030702, A030703, A030704, A030705, A030706, A195944.
For other related sequences, see A052382, A027870, A102483.

Programs

  • Mathematica
    Select[4^Range[0,50],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Aug 31 2021 *)
  • PARI
    for(n=0,99,vecmin(digits(4^n))&& print1(4^n","))

Formula

a(n)=4^A030701(n).

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A306112 Largest k such that 2^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

86, 229, 231, 359, 283, 357, 475, 476, 649, 733, 648, 696, 824, 634, 732, 890, 895, 848, 823, 929, 1092, 1091, 1239, 1201, 1224, 1210, 1141, 1339, 1240, 1282, 1395, 1449, 1416, 1408, 1616, 1524, 1727, 1725, 1553, 1942, 1907, 1945, 1870, 1724, 1972, 1965, 2075, 1983, 2114, 2257, 2256
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A007377: exponents of powers of 2 without digit 0.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A031146: least k such that 2^k has n digits 0 in base 10.
Cf. A305942: number of k's such that 2^k has n digits 0.
Cf. A305932: row n lists exponents of 2^k with n digits 0.
Cf. A007377: { k | 2^k has no digit 0 } : row 0 of the above.
Cf. A238938: { 2^k having no digit 0 }.
Cf. A027870: number of 0's in 2^n (and A065712, A065710, A065714, A065715, A065716, A065717, A065718, A065719, A065744 for digits 1 .. 9).
Cf. A102483: 2^n contains no 0 in base 3.

Programs

  • PARI
    A306112_vec(nMax,M=99*nMax+199,x=2,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A104320 Number of zeros in ternary representation of 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 0, 4, 2, 3, 3, 3, 3, 3, 7, 7, 9, 5, 6, 6, 4, 4, 3, 5, 6, 7, 9, 9, 10, 6, 6, 9, 9, 8, 9, 8, 7, 13, 12, 13, 9, 5, 9, 8, 6, 16, 13, 9, 10, 11, 11, 7, 14, 13, 13, 9, 12, 14, 15, 15, 11, 11, 17, 15, 19, 14, 19, 12, 18, 15, 11, 10, 16, 15, 14, 14, 13, 17, 14
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 01 2005

Keywords

Comments

Conjecture from N. J. A. Sloane: a(n) > 0 for n > 15, see A102483.

Examples

			n=13: 2^13=8192 -> '102020102', a(13) = 4.
		

Crossrefs

Programs

  • Magma
    [Multiplicity(Intseq(2^n,3),0):n in [0..90]]; // Marius A. Burtea, Nov 17 2019
  • Maple
    f:= n -> numboccur(0, convert(2^n,base,3)):
    map(f, [$0..100]); # Robert Israel, Nov 17 2019
  • Mathematica
    Table[DigitCount[2^n,3,0],{n,0,90}] (* Harvey P. Dale, May 06 2014 *)
  • PARI
    a(n) = my(d=vecsort(digits(2^n, 3))); #setintersect(d, vector(#d)) \\ Felix Fröhlich, Nov 17 2019
    
  • PARI
    a(n) = #select(d->!d, digits(2^n, 3)); \\ Ruud H.G. van Tol, May 09 2024
    

Formula

a(n) = A077267(A000079(n)).
a(A104321(n))=n and a(m)<>n for m < A104321(n).

A117970 Position of first 0 counting from the least significant digit in the ternary expansion of 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 2, 2, 4, 4, 5, 4, 2, 2, 4, 0, 3, 4, 2, 2, 3, 3, 8, 3, 2, 2, 5, 5, 6, 5, 2, 2, 11, 4, 3, 5, 2, 2, 3, 3, 11, 3, 2, 2, 5, 8, 4, 5, 2, 2, 13, 5, 3, 5, 2, 2, 3, 3, 4, 3, 2, 2, 4, 4, 7, 4, 2, 2, 4, 6, 3, 4, 2, 2, 3, 3, 7, 3, 2, 2, 6, 6, 7, 6, 2, 2, 10, 4, 3, 7, 2, 2, 3, 3, 5, 3, 2, 2, 11, 5, 4, 17
Offset: 0

Views

Author

Eric W. Weisstein, Apr 06 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n) = { my (p=2^n); for (k=1, oo, if (p==0, return (0), p%3==0, return (k), p\=3)) } \\ Rémy Sigrist, Dec 20 2019

Extensions

Edited by Charles R Greathouse IV, Aug 05 2010
a(0) = 0 prepended by Rémy Sigrist, Dec 20 2019

A346497 List of powers of 2 written in base 3 which contain no zero digits.

Original entry on oeis.org

1, 2, 11, 22, 121, 1122221122
Offset: 1

Views

Author

Rafael Castro Couto, Jul 20 2021

Keywords

Comments

The listed terms are the base-3 expansions of 1, 2, 4, 8, 16, and 32768.
The program shows that there are no other terms less than 2^1000.
a(7) > 2^(10^7). - Martin Ehrenstein, Jul 27 2021
If it exists, a(7) > 2^(10^21). - Robert Saye, Mar 23 2022

References

  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers" (1997), p. 123.

Crossrefs

Cf. A102483, A004642 (all powers of 2 in base 3), A104320 (number of zeros in ternary representation of 2^n), A130693 (same problem in base 10).

Programs

  • Mathematica
    pwr = 1; Do[pwr = Mod[2*pwr, 3^100]; d = Union[IntegerDigits[pwr, 3]]; If[Intersection[d, {0}] == {}, Print[IntegerString[pwr, 3]]], {n, 10000000}] (* Ricardo Bittencourt, Jul 07 2021 *)
    Select[Table[FromDigits[IntegerDigits[2^n,3]],{n,0,100}],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Feb 18 2025 *)

Formula

a(n) = A007089(2^A102483(n)). - Michel Marcus, Jul 23 2021

A351927 Smallest positive integer k such that 2^k has no '0' in the last n digits of its ternary expansion.

Original entry on oeis.org

1, 2, 4, 10, 15, 15, 15, 15, 15, 15, 50, 50, 101, 101, 101, 101, 143, 143, 143, 143, 143, 143, 143, 143, 143, 1916, 1916, 1916, 1916, 1916, 1916, 82286, 1134022, 1639828, 3483159, 3483159, 3483159, 3917963, 3917963, 3917963, 4729774, 4729774, 9827775, 9827775, 43622201, 43622201, 43622201
Offset: 1

Views

Author

Robert Saye, Feb 25 2022

Keywords

Comments

The powers of two are required to have at least n ternary digits, i.e., 2^k >= 3^(n-1).
Sloane (1973) conjectured that every power 2^n with n > 15 has a '0' somewhere in its ternary expansion (see A102483 and A346497).

Crossrefs

Programs

  • Mathematica
    smallest[n_] := Module[{k}, k = Max[1, Ceiling[(n - 1) Log[2, 3]]];  While[MemberQ[Take[IntegerDigits[2^k, 3], -n], 0], ++k]; k]; Table[smallest[n], {n, 1, 20}]
  • PARI
    a(n) = my(k=1); while(!vecmin(Vec(Vecrev(digits(2^k,3)), n)), k++); k; \\ Michel Marcus, Feb 26 2022
    
  • Python
    from sympy.ntheory.digits import digits
    def a(n, startk=1):
        k = max(startk, len(bin(3**(n-1))[2:]))
        pow2 = 2**k
        while 0 in digits(pow2, 3)[-n:]:
            k += 1
            pow2 *= 2
        return k
    an = 0
    for n in range(1, 32):
        an = a(n, an)
        print(an, end=", ") # Michael S. Branicky, Mar 10 2022
    
  • Python
    from itertools import count
    def A351927(n):
        kmax, m = 3**n, (3**(n-1)).bit_length()
        k2 = pow(2,m,kmax)
        for k in count(m):
            a = k2
            if 3*a >= kmax:
                while a > 0:
                    a, b = divmod(a,3)
                    if b == 0:
                        break
                else:
                    return k
            k2 = 2*k2 % kmax # Chai Wah Wu, Mar 19 2022

A252482 Exponents n such that the decimal expansion of the power 12^n contains no zeros.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 10, 14, 20, 26
Offset: 1

Views

Author

M. F. Hasler, Dec 17 2014

Keywords

Comments

Conjectured to be finite.
See A245853 for the actual powers 12^a(n).

Crossrefs

For zeroless powers x^n, see A238938 (x=2), A238939, A238940, A195948, A238936, A195908, A245852, A240945 (k=9), A195946 (x=11), A245853, A195945; A195942, A195943, A103662.
For the corresponding exponents, see A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, this sequence A252482, A195944.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Mathematica
    Select[Range[0,30],DigitCount[12^#,10,0]==0&] (* Harvey P. Dale, Apr 06 2019 *)
  • PARI
    for(n=0,9e9,vecmin(digits(12^n))&&print1(n","))
Previous Showing 11-18 of 18 results.