cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A136682 Numbers k such that A119682(k) is prime.

Original entry on oeis.org

2, 3, 5, 8, 23, 41, 47, 48, 49, 95, 125, 203, 209, 284, 323, 395, 504, 553, 655, 781, 954, 1022, 1474, 1797, 1869, 1923, 1934, 1968, 2043, 2678, 3413, 3439, 4032, 4142, 4540, 4895, 5018, 5110, 5194, 5357, 6591, 11504, 11949, 14084, 20365
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A119682(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j^2.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k^2, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,125} ]

Extensions

a(12)-a(17) from Alexander Adamchuk, Apr 28 2008
a(18)-a(31) from Amiram Eldar, Mar 14 2019
a(32)-a(45) from Robert Price, Apr 14 2019

A136683 Numbers k such that A136675(k) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 9, 20, 21, 29, 119, 132, 151, 351, 434, 457, 462, 572, 611, 930, 1107, 1157, 1452, 1515, 2838, 3997, 5346, 6463, 6725, 7664, 10234, 14168, 14299
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A136675(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j^3.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k^3, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,151} ]
    Flatten[Position[Numerator[Accumulate[Table[(-1)^(k+1) 1/k^3,{k,3000}]]],?PrimeQ] ] (* _Harvey P. Dale, Feb 12 2013 *)
  • PARI
    isok(n) = ispseudoprime(numerator(sum(k=1, n, (-1)^(k+1) / k^3))); \\ Daniel Suteu, Mar 15 2019

Extensions

More terms from Harvey P. Dale, Feb 12 2013
a(25)-a(28) from Amiram Eldar, Mar 15 2019
a(29)-a(32) from Robert Price, Apr 22 2019

A136684 Numbers k such that A120296(k) is prime.

Original entry on oeis.org

3, 5, 8, 11, 20, 38, 61, 65, 71, 80, 83, 93, 233, 704, 1649, 2909, 3417, 3634, 9371
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A120296(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j^4.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k^4, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,100} ]
    Select[Range[1000],PrimeQ[Numerator[Sum[(-1)^(k+1) 1/k^4,{k,#}]]]&] (* Harvey P. Dale, Aug 28 2012 *)

Extensions

More terms from Harvey P. Dale, Aug 28 2012
a(15)-a(19) from Robert Price, Apr 23 2019

A136685 Numbers k such that A136676(k) is prime.

Original entry on oeis.org

2, 19, 51, 78, 84, 130, 294, 910, 2223, 2642, 3261, 4312, 4973, 7846, 9439
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A136676(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j^5.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k^5, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,130} ]

Extensions

a(7)-a(8) from Amiram Eldar, Mar 14 2019
a(9)-a(15) from Robert Price, Apr 16 2019

A136686 Numbers k such that A136677(k) is prime.

Original entry on oeis.org

19, 47, 164, 235, 504, 1109, 1112, 5134, 9222, 12803
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A136677(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j^6.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k^6, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,130} ]

Extensions

a(4)-a(5) from Hiroaki Yamanouchi, Sep 22 2014
a(6) from Amiram Eldar, Mar 14 2019
a(7)-a(9) from Robert Price, Apr 20 2019
a(10) from Michael S. Branicky, Nov 16 2024

A291456 a(n) = (n!)^6 * Sum_{i=1..n} 1/i^6.

Original entry on oeis.org

0, 1, 65, 47449, 194397760, 3037656102976, 141727869124448256, 16674281388691716870144, 4371079210518164503303028736, 2322975003299339366419974718488576, 2322977286679362958150790503464960000000
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2017

Keywords

Crossrefs

Column k=6 of A291556.
Cf. A000254 (k=1), A001819 (k=2), A066989 (k=3), A203229 (k=4), A099827 (k=5).

Programs

  • Mathematica
    Table[(n!)^6 * Sum[1/i^6, {i, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 27 2017 *)

Formula

a(0) = 0, a(1) = 1, a(n+1) = (n^6 + (n+1)^6)*a(n) - n^12*a(n-1) for n > 0.
a(n) ~ 8 * Pi^9 * n^(6*n+3) / (945 * exp(6*n)). - Vaclav Kotesovec, Aug 27 2017
a(n) = (n!)^6 * A103345(n)/A103346(n). - Petros Hadjicostas, May 10 2020
Sum_{n>=0} a(n) * x^n / (n!)^6 = polylog(6,x) / (1 - x). - Ilya Gutkovskiy, Jul 15 2020

A120077 Denominators of row sums of rational triangle A120072/A120073.

Original entry on oeis.org

4, 36, 144, 3600, 3600, 176400, 705600, 6350400, 1270080, 153679680, 153679680, 25971865920, 25971865920, 129859329600, 519437318400, 150117385017600, 150117385017600, 54192375991353600, 2167695039654144, 1548353599752960, 221193371393280, 117011293467045120
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The first 19 terms coincide with A007407(n), for n>=2. However a(20) = 2167695039654144 and A007407(20) = 10838475198270720 = 5*a(20). Also a(21) = 1548353599752960 and A007407(21) = 221193371393280 = a(21)/7. From n = 22 up to at least n = 100 (checked) both sequences coincide again.
See the W. Lang link under A120072 for more details.
The corresponding numerators are given by A120076.
The n for which a(n) differs from A007407(n) are given by A309829. - Jeppe Stig Nielsen, Aug 18 2019

Examples

			The rationals A120076(m)/a(m), m>=2, begin with (3/4, 37/36, 169/144, 4549/3600, 4769/3600, ... ).
		

Crossrefs

Programs

  • Magma
    A120077:= func< n | Denominator( (&+[1/k^2: k in [1..n]]) -1/n) >;
    [A120077(n): n in [2..30]]; // G. C. Greubel, Apr 25 2023
    
  • Mathematica
    Table[Denominator[HarmonicNumber[n,2] -1/n], {n,2,40}] (* G. C. Greubel, Apr 25 2023 *)
  • PARI
    a(n) = denominator(sum(j=1,n-1,1/j^2-1/n^2)) \\ Jeppe Stig Nielsen, Aug 18 2019
    
  • PARI
    a(n) = denominator(sum(j=1,n,1/j^2) - 1/n) \\ Jeppe Stig Nielsen, Aug 18 2019
    
  • SageMath
    def A120077(n): return denominator(harmonic_number(n,2) - 1/n)
    [A120077(n) for n in range(2,31)] # G. C. Greubel, Apr 25 2023

Formula

a(n) = denominator(r(m)), with the rationals r(m) = Sum_{n=1..m-1} A120072(m,n)/A120073(m,n), m >= 2.
The rationals are r(m) = Zeta(2; m-1) - (m-1)/m^2, m>=2, with the partial sums Zeta(2; n) = Sum_{k=1..n} 1/k^2. See the W. Lang link under A103345.
O.g.f. for the rationals r(m), m>=2: log(1-x) + polylog(2,x)/(1-x).

Extensions

a(21)-a(23) from Jeppe Stig Nielsen, Aug 18 2019

A103347 Numerators of Sum_{k=1..n} 1/k^7 = Zeta(7,n).

Original entry on oeis.org

1, 129, 282251, 36130315, 2822716691183, 940908897061, 774879868932307123, 99184670126682733619, 650750755630450535274259, 650750820166709327386387, 12681293156341501091194786541177, 12681293507322704937269896541177
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(7,n), of Euler's Zeta(7). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805.
For the denominators see A103348 and for the rationals Zeta(7,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n) = numerator(sum_{k=1..n} 1/k^7).
G.f. for rationals Zeta(7, n): polylogarithm(7, x)/(1-x).

A120076 Numerators of row sums of rational triangle A120072/A120073.

Original entry on oeis.org

3, 37, 169, 4549, 4769, 241481, 989549, 9072541, 1841321, 225467009, 227698469, 38801207261, 39076419341, 196577627041, 790503882349, 229526961468061, 230480866420061, 83512167402400421, 3351610394325821
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The corresponding denominators are given by A120077.
See the W. Lang link under A120072 for more details.

Examples

			The rationals a(m)/A120077(m), m>=2, begin with (3/4, 37/36, 169/144, 4549/3600, 4769/3600, ...).
		

Crossrefs

Programs

  • Magma
    A120076:= func< n | Numerator( (&+[1/k^2: k in [1..n]]) -1/n) >;
    [A120076(n): n in [2..30]]; // G. C. Greubel, Apr 24 2023
    
  • Mathematica
    Table[Numerator[HarmonicNumber[n,2] -1/n], {n,2,40}] (* G. C. Greubel, Apr 24 2023 *)
  • SageMath
    def A120076(n): return numerator(harmonic_number(n,2) - 1/n)
    [A120076(n) for n in range(2,31)] # G. C. Greubel, Apr 24 2023

Formula

a(n) = numerator(r(m)), with the rationals r(m) = Sum_{n=1..m-1} A120072(m,n)/A120073(m,n), m >= 2.
The rationals are r(m) = Zeta(2; m-1) - (m-1)/m^2, m >= 2, with the partial sums Zeta(2; n) = Sum_{k=1..n} 1/k^2. See the W. Lang link in A103345.
O.g.f. for the rationals r(m), m>=2: log(1-x) + polylog(2,x)/(1-x).

A103349 Numerators of sum_{k=1..n} 1/k^8 = Zeta(8,n).

Original entry on oeis.org

1, 257, 1686433, 431733409, 168646292872321, 168646392872321, 972213062238348973121, 248886558707571775009601, 1632944749460578249437992161, 1632944765723715465050248417
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(8,n) of Euler's Zeta(8). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805.
For the denominators see A103350 and for the rationals Zeta(8,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n)=numerator(sum_{k=1..n} 1/k^8).
G.f. for rationals Zeta(8, n): polylogarithm(8, x)/(1-x).
Previous Showing 11-20 of 25 results. Next