cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 135 results. Next

A277103 Number of partitions of n for which the number of odd parts is equal to the positive alternating sum of the parts.

Original entry on oeis.org

1, 1, 0, 1, 3, 3, 1, 3, 10, 10, 4, 10, 27, 27, 13, 28, 69, 69, 37, 72, 161, 162, 96, 171, 361, 364, 230, 388, 768, 777, 522, 836, 1581, 1605, 1128, 1739, 3145, 3203, 2345, 3495, 6094, 6225, 4712, 6831, 11511, 11794, 9198, 13010, 21293, 21875, 17496, 24239
Offset: 0

Views

Author

Emeric Deutsch, Oct 18 2016

Keywords

Comments

It follows by conjugation that the partition statistics "alternating sum" and "number of odd parts" are equidistributed. Consequently, the self-conjugate partitions satisfy the required condition.
In the first Maple program (improvable) AS gives the positive alternating sum of a finite sequence s, OP gives the number of odd terms of a finite sequence of positive integers.
For the specified value of n, the second Maple program lists the partitions of n counted by a(n).
Number of integer partitions of n with the same number of odd parts as their conjugate. - Gus Wiseman, Jun 27 2021

Examples

			a(3) = 1 because we have [2,1]. The partitions [3] and [1,1,1] do not qualify.
a(4) = 3 because we have [3,1], [2,2], and [2,1,1]. The partitions [4] and [1,1,1,1] do not qualify.
		

Crossrefs

Comparing even parts to odd conjugate parts gives A277579.
Comparing product of parts to product of conjugate parts gives A325039.
The reverse version is A345196.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: OP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 1 then ct := ct+1 else  end if end do: ct end proc: a := proc (n) local P, c, k: P := partition(n): c := 0: for k to nops(P) do if AS(P[k]) = OP(P[k]) then c := c+1 else end if end do: c end proc: seq(a(n), n = 0 .. 50);
    n := 8: with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: OP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 1 then ct := ct+1 else  end if end do: ct end proc: P := partition(n): C := {}: for k to nops(P) do if AS(P[k]) = OP(P[k]) then C := `union`(C, {P[k]}) else  end if end do: C;
    # alternative Maple program:
    b:= proc(n, i, s, t) option remember; `if`(n=0,
          `if`(s=0, 1, 0), `if`(i<1, 0, b(n, i-1, s, t)+
          `if`(i>n, 0, b(n-i, i, s+t*i-irem(i, 2), -t))))
        end:
    a:= n-> b(n$2, 0, 1):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 19 2016
  • Mathematica
    b[n_, i_, s_, t_] := b[n, i, s, t] = If[n == 0, If[s == 0, 1, 0], If[i<1, 0, b[n, i-1, s, t] + If[i>n, 0, b[n-i, i, s + t*i - Mod[i, 2], -t]]]]; a[n_] := b[n, n, 0, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]==Count[conj[#],?OddQ]&]],{n,0,15}] (* Gus Wiseman, Jun 27 2021 *)

A119899 Integers i such that bigomega(i) (A001222) and tau(i) (A000005) are both even.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 24, 26, 33, 34, 35, 38, 39, 40, 46, 51, 54, 55, 56, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 104, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 135, 136, 140, 141, 142, 143, 145, 146, 150
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Comments

Also numbers whose alternating sum of prime indices is < 0. Equivalently, numbers with even bigomega whose conjugate prime indices are not all even. This is the intersection of A028260 and A000037. - Gus Wiseman, Jun 20 2021

Examples

			From _Gus Wiseman_, Jun 20 2021: (Start)
The sequence of terms together with their prime indices begins:
       6: {1,2}          51: {2,7}          86: {1,14}
      10: {1,3}          54: {1,2,2,2}      87: {2,10}
      14: {1,4}          55: {3,5}          88: {1,1,1,5}
      15: {2,3}          56: {1,1,1,4}      90: {1,2,2,3}
      21: {2,4}          57: {2,8}          91: {4,6}
      22: {1,5}          58: {1,10}         93: {2,11}
      24: {1,1,1,2}      60: {1,1,2,3}      94: {1,15}
      26: {1,6}          62: {1,11}         95: {3,8}
      33: {2,5}          65: {3,6}          96: {1,1,1,1,1,2}
      34: {1,7}          69: {2,9}         104: {1,1,1,6}
      35: {3,4}          74: {1,12}        106: {1,16}
      38: {1,8}          77: {4,5}         111: {2,12}
      39: {2,6}          82: {1,13}        115: {3,9}
      40: {1,1,1,3}      84: {1,1,2,4}     118: {1,17}
      46: {1,9}          85: {3,7}         119: {4,7}
(End)
		

Crossrefs

Superset: A119847. Subset: A006881. The intersection of A028260 and A000037.
Positions of negative terms in A316524.
The partitions with these Heinz numbers are counted by A344608.
Complement of A344609.

Programs

  • Mathematica
    Select[Range[200],And@@EvenQ[{PrimeOmega[#],DivisorSigma[0,#]}]&] (* Harvey P. Dale, Jan 24 2013 *)

A262977 a(n) = binomial(4*n-1,n).

Original entry on oeis.org

1, 3, 21, 165, 1365, 11628, 100947, 888030, 7888725, 70607460, 635745396, 5752004349, 52251400851, 476260169700, 4353548972850, 39895566894540, 366395202809685, 3371363686069236, 31074067324187580, 286845713747883300, 2651487106659130740, 24539426037817994160
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 06 2015

Keywords

Comments

From Gus Wiseman, Sep 28 2022: (Start)
Also the number of integer compositions of 4n with alternating sum 2n, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A348614. The a(12) = 21 compositions are:
(6,2) (1,2,5) (1,1,5,1) (1,1,1,1,4)
(2,2,4) (2,1,4,1) (1,1,2,1,3)
(3,2,3) (3,1,3,1) (1,1,3,1,2)
(4,2,2) (4,1,2,1) (1,1,4,1,1)
(5,2,1) (5,1,1,1) (2,1,1,1,3)
(2,1,2,1,2)
(2,1,3,1,1)
(3,1,1,1,2)
(3,1,2,1,1)
(4,1,1,1,1)
The following pertain to this interpretation:
- The case of partitions is A000712, reverse A006330.
- Allowing any alternating sum gives A013777 (compositions of 4n).
- A011782 counts compositions of n.
- A034871 counts compositions of 2n with alternating sum 2k.
- A097805 counts compositions by alternating (or reverse-alternating) sum.
- A103919 counts partitions by sum and alternating sum (reverse: A344612).
- A345197 counts compositions by length and alternating sum.
(End)

Crossrefs

Programs

  • Magma
    [Binomial(4*n-1,n): n in [0..20]]; // Vincenzo Librandi, Oct 06 2015
    
  • Mathematica
    Table[Binomial[4 n - 1, n], {n, 0, 40}] (* Vincenzo Librandi, Oct 06 2015 *)
  • Maxima
    B(x):=sum(binomial(4*n-1,n-1)*3/(4*n-1)*x^n,n,1,30);
    taylor(x*diff(B(x),x,1)/B(x),x,0,20);
    
  • PARI
    a(n) = binomial(4*n-1,n); \\ Michel Marcus, Oct 06 2015

Formula

G.f.: A(x)=x*B'(x)/B(x), where B(x) if g.f. of A006632.
a(n) = Sum_{k=0..n}(binomial(n-1,n-k)*binomial(3*n,k)).
a(n) = 3*A224274(n), for n > 0. - Michel Marcus, Oct 12 2015
From Peter Bala, Nov 04 2015: (Start)
The o.g.f. equals f(x)/g(x), where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A005810 (k = 0), A052203 (k = 1), A257633 (k = 2), A224274 (k = 3) and A004331 (k = 4). (End)
a(n) = [x^n] 1/(1 - x)^(3*n). - Ilya Gutkovskiy, Oct 03 2017
a(n) = A071919(3n-1,n+1) = A097805(4n,n+1). - Gus Wiseman, Sep 28 2022
From Peter Bala, Feb 14 2024: (Start)
a(n) = (-1)^n * binomial(-3*n, n).
a(n) = hypergeom([1 - 3*n, -n], [1], 1).
The g.f. A(x) satisfies A(x/(1 + x)^4) = 1/(1 - 3*x). (End)
a(n) = Sum_{k = 0..n} binomial(2*n+k-1, k)*binomial(2*n-k-1, n-k). - Peter Bala, Sep 16 2024
G.f.: 1/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 17 2025

A344609 Numbers whose alternating sum of prime indices is >= 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 30, 31, 32, 36, 37, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 89, 92, 97, 98, 99, 100, 101, 102, 103, 105, 107
Offset: 1

Views

Author

Gus Wiseman, May 30 2021

Keywords

Comments

Also Heinz numbers of partitions whose reverse-alternating sum is >= 0. These are partitions whose conjugate parts are all even or whose length is odd.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            20: {1,1,3}         45: {2,2,3}
      2: {1}           23: {9}             47: {15}
      3: {2}           25: {3,3}           48: {1,1,1,1,2}
      4: {1,1}         27: {2,2,2}         49: {4,4}
      5: {3}           28: {1,1,4}         50: {1,3,3}
      7: {4}           29: {10}            52: {1,1,6}
      8: {1,1,1}       30: {1,2,3}         53: {16}
      9: {2,2}         31: {11}            59: {17}
     11: {5}           32: {1,1,1,1,1}     61: {18}
     12: {1,1,2}       36: {1,1,2,2}       63: {2,2,4}
     13: {6}           37: {12}            64: {1,1,1,1,1,1}
     16: {1,1,1,1}     41: {13}            66: {1,2,5}
     17: {7}           42: {1,2,4}         67: {19}
     18: {1,2,2}       43: {14}            68: {1,1,7}
     19: {8}           44: {1,1,5}         70: {1,3,4}
For example, the prime indices of 70 are {1,3,4} with alternating sum 1 - 3 + 4 = 2, so 70 is in the sequence. On the other hand, the prime indices of 24 are {1,1,1,2} with alternating sum 1 - 1 + 1 - 2 = -1, so 24 is not in the sequence.
		

Crossrefs

The opposite (nonpositive) version is A028260, counted by A027187.
The strict case (n > 0) is counted by A067659, odd bisection A344650.
Permutations of prime indices of these terms are counted by A116406.
Complement of A119899, Heinz numbers of the partitions counted by A344608.
Positions of nonnegative terms in A316524 or A344617.
Heinz numbers of the partitions counted by A344607.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions with alternating sum 1.
A000097 counts partitions with alternating sum 2.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum.
A120452 counts partitions with reverse-alternating sum 2.
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A335433/A335448 rank separable/inseparable partitions.
A344604 counts wiggly compositions with twins.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344612 counts partitions by sum and reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[100],ats[primeMS[#]]>=0&]

A345910 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum -1.

Original entry on oeis.org

6, 20, 25, 27, 30, 72, 81, 83, 86, 92, 98, 101, 103, 106, 109, 111, 116, 121, 123, 126, 272, 289, 291, 294, 300, 312, 322, 325, 327, 330, 333, 335, 340, 345, 347, 350, 360, 369, 371, 374, 380, 388, 393, 395, 398, 402, 405, 407, 410, 413, 415, 420, 425, 427
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
      6: (1,2)
     20: (2,3)
     25: (1,3,1)
     27: (1,2,1,1)
     30: (1,1,1,2)
     72: (3,4)
     81: (2,4,1)
     83: (2,3,1,1)
     86: (2,2,1,2)
     92: (2,1,1,3)
     98: (1,4,2)
    101: (1,3,2,1)
    103: (1,3,1,1,1)
    106: (1,2,2,2)
    109: (1,2,1,2,1)
		

Crossrefs

These compositions are counted by A001791.
A version using runs of binary digits is A031444.
These are the positions of -1's in A124754.
The opposite (positive 1) version is A345909.
The reverse version is A345912.
The version for alternating sum of prime indices is A345959.
Standard compositions: A000120, A066099, A070939, A124754, A228351, A344618.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions of 2n+1 with alternating sum 1, ranked by A001105.
A011782 counts compositions.
A097805 counts compositions by sum and alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]==-1&]

A345912 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum -1.

Original entry on oeis.org

5, 18, 23, 25, 29, 68, 75, 78, 81, 85, 90, 95, 98, 103, 105, 109, 114, 119, 121, 125, 264, 275, 278, 284, 289, 293, 298, 303, 308, 315, 318, 322, 327, 329, 333, 338, 343, 345, 349, 356, 363, 366, 369, 373, 378, 383, 388, 395, 398, 401, 405, 410, 415, 418, 423
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
      5: (2,1)
     18: (3,2)
     23: (2,1,1,1)
     25: (1,3,1)
     29: (1,1,2,1)
     68: (4,3)
     75: (3,2,1,1)
     78: (3,1,1,2)
     81: (2,4,1)
     85: (2,2,2,1)
     90: (2,1,2,2)
     95: (2,1,1,1,1,1)
     98: (1,4,2)
    103: (1,3,1,1,1)
    105: (1,2,3,1)
		

Crossrefs

These compositions are counted by A001791.
These are the positions of -1's in A344618.
The non-reverse version is A345910.
The opposite (positive 1) version is A345911.
The version for Heinz numbers of partitions is A345959.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating or reverse-alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==-1&]

A345917 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum > 0.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 9, 11, 14, 16, 17, 18, 19, 21, 22, 23, 26, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 42, 44, 45, 47, 52, 56, 57, 59, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 84, 85, 87, 88, 89, 90, 91, 93, 94, 95, 100, 104, 105, 107
Offset: 1

Views

Author

Gus Wiseman, Jul 08 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
     1: (1)
     2: (2)
     4: (3)
     5: (2,1)
     7: (1,1,1)
     8: (4)
     9: (3,1)
    11: (2,1,1)
    14: (1,1,2)
    16: (5)
    17: (4,1)
    18: (3,2)
    19: (3,1,1)
    21: (2,2,1)
    22: (2,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A026424.
These compositions are counted by A027306.
These are the positions of terms > 0 in A124754.
The weak (k >= 0) version is A345913.
The reverse-alternating version is A345918.
The opposite (k < 0) version is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]>0&]

A345911 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum 1.

Original entry on oeis.org

1, 6, 7, 20, 21, 26, 27, 30, 31, 72, 73, 82, 83, 86, 87, 92, 93, 100, 101, 106, 107, 110, 111, 116, 117, 122, 123, 126, 127, 272, 273, 290, 291, 294, 295, 300, 301, 312, 313, 324, 325, 330, 331, 334, 335, 340, 341, 346, 347, 350, 351, 360, 361, 370, 371, 374
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     1: (1)
     6: (1,2)
     7: (1,1,1)
    20: (2,3)
    21: (2,2,1)
    26: (1,2,2)
    27: (1,2,1,1)
    30: (1,1,1,2)
    31: (1,1,1,1,1)
    72: (3,4)
    73: (3,3,1)
    82: (2,3,2)
    83: (2,3,1,1)
    86: (2,2,1,2)
    87: (2,2,1,1,1)
		

Crossrefs

These compositions are counted by A000984 (bisection of A126869).
The version for Heinz numbers of partitions is A001105.
A version using runs of binary digits is A066879.
These are positions of 1's in A344618.
The non-reverse version is A345909.
The opposite (negative 1) version is A345912.
The version for prime indices is A345958.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating or reverse-alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==1&]

A345913 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum >= 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     0: ()           17: (4,1)          37: (3,2,1)
     1: (1)          18: (3,2)          38: (3,1,2)
     2: (2)          19: (3,1,1)        39: (3,1,1,1)
     3: (1,1)        21: (2,2,1)        41: (2,3,1)
     4: (3)          22: (2,1,2)        42: (2,2,2)
     5: (2,1)        23: (2,1,1,1)      43: (2,2,1,1)
     7: (1,1,1)      26: (1,2,2)        44: (2,1,3)
     8: (4)          28: (1,1,3)        45: (2,1,2,1)
     9: (3,1)        29: (1,1,2,1)      46: (2,1,1,2)
    10: (2,2)        31: (1,1,1,1,1)    47: (2,1,1,1,1)
    11: (2,1,1)      32: (6)            50: (1,3,2)
    13: (1,2,1)      33: (5,1)          52: (1,2,3)
    14: (1,1,2)      34: (4,2)          53: (1,2,2,1)
    15: (1,1,1,1)    35: (4,1,1)        55: (1,2,1,1,1)
    16: (5)          36: (3,3)          56: (1,1,4)
		

Crossrefs

These compositions are counted by A116406.
These are the positions of terms >= 0 in A124754.
The version for prime indices is A344609.
The reverse-alternating sum version is A345914.
The opposite (k <= 0) version is A345915.
The strict (k > 0) version is A345917.
The complement is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]>=0&]

A345909 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum 1.

Original entry on oeis.org

1, 5, 7, 18, 21, 23, 26, 29, 31, 68, 73, 75, 78, 82, 85, 87, 90, 93, 95, 100, 105, 107, 110, 114, 117, 119, 122, 125, 127, 264, 273, 275, 278, 284, 290, 293, 295, 298, 301, 303, 308, 313, 315, 318, 324, 329, 331, 334, 338, 341, 343, 346, 349, 351, 356, 361
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2021

Keywords

Comments

The alternating sum of a composition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
      1: (1)             87: (2,2,1,1,1)
      5: (2,1)           90: (2,1,2,2)
      7: (1,1,1)         93: (2,1,1,2,1)
     18: (3,2)           95: (2,1,1,1,1,1)
     21: (2,2,1)        100: (1,3,3)
     23: (2,1,1,1)      105: (1,2,3,1)
     26: (1,2,2)        107: (1,2,2,1,1)
     29: (1,1,2,1)      110: (1,2,1,1,2)
     31: (1,1,1,1,1)    114: (1,1,3,2)
     68: (4,3)          117: (1,1,2,2,1)
     73: (3,3,1)        119: (1,1,2,1,1,1)
     75: (3,2,1,1)      122: (1,1,1,2,2)
     78: (3,1,1,2)      125: (1,1,1,1,2,1)
     82: (2,3,2)        127: (1,1,1,1,1,1,1)
     85: (2,2,2,1)      264: (5,4)
		

Crossrefs

These compositions are counted by A000984 (bisection of A126869).
The version for prime indices is A001105.
A version using runs of binary digits is A031448.
These are the positions of 1's in A124754.
The opposite (negative 1) version is A345910.
The reverse version is A345911.
The version for Heinz numbers of partitions is A345958.
Standard compositions: A000120, A066099, A070939, A124754, A228351, A344618.
A000070 counts partitions with alternating sum 1 (ranked by A345957).
A000097 counts partitions with alternating sum 2 (ranked by A345960).
A011782 counts compositions.
A097805 counts compositions by sum and alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909 (this sequence)/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]==1&]
Previous Showing 31-40 of 135 results. Next