cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A256854 Decimal expansion of area of a regular 11-gon with unit edge length.

Original entry on oeis.org

9, 3, 6, 5, 6, 3, 9, 9, 0, 6, 9, 4, 5, 4, 3, 7, 5, 2, 4, 8, 8, 2, 3, 5, 8, 4, 5, 3, 2, 8, 4, 3, 3, 4, 2, 8, 7, 8, 8, 2, 5, 7, 4, 9, 6, 1, 8, 3, 5, 0, 2, 7, 3, 8, 7, 6, 8, 9, 3, 1, 8, 6, 6, 7, 9, 4, 7, 8, 7, 0, 9, 3, 9, 8, 2, 3, 1, 0, 0, 7, 6, 4, 6, 1, 3, 0, 1, 3, 6, 4, 4, 1, 0, 4, 8, 1, 1, 2, 3, 0, 8, 3, 1, 1, 0
Offset: 1

Views

Author

Stanislav Sykora, Apr 12 2015

Keywords

Examples

			9.36563990694543752488235845328433428788257496183502738768931...
		

Crossrefs

Cf. A000796, A120011 (p=3), A102771 (p=5), A104956 (p=6), A178817 (p=7), A090488 (p=8), A256853 (p=9), A178816 (p=10), A178809 (p=12).

Programs

  • Mathematica
    RealDigits[11/4 Cot[Pi/11],10,120][[1]] (* Harvey P. Dale, Apr 03 2016 *)
  • PARI
    p=11; a=(p/4)*cotan(Pi/p)        \\ Use realprecision in excess

Formula

Equals (p/4)*cot(Pi/p), with p = 11.

A020821 Decimal expansion of 1/8.

Original entry on oeis.org

1, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Also, decimal expansion of Integral_{x=0..oo} x^2/cosh(Pi*x) dx. - Bruno Berselli, Mar 20 2013
Also, decimal expansion of Sum_{i>=1} 1/9^i. - Bruno Berselli, Jan 03 2014
For any triangle ABC, sin(A/2) * sin(B/2) * sin(C/2) <= 1/8, equality is obtained only when the triangle is equilateral (see the Kiran S. Kedlaya link). - Bernard Schott, Sep 16 2022

Examples

			0.12500000000000000000...
		

Crossrefs

Cf. A002194, A104956 (other trigonometric inequalities).

Programs

  • Mathematica
    PadRight[{1, 2, 5}, 100] (* Paolo Xausa, Aug 27 2024 *)

Formula

Equals Sum_{k>=1} exp(-Pi*k^2) * (Pi*k^2 - 1/4) (Ramanujan, 1918). - Amiram Eldar, Jan 01 2025

A152623 Decimal expansion of 3/2.

Original entry on oeis.org

1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Comments

Sum of the inverses of the tetrahedral numbers (A000292). - Michael B. Porter, Nov 27 2017
For any triangle ABC, cos A + cos B + cos C <= 3/2; equality is obtained only when the triangle is equilateral (see the Kiran S. Kedlaya link). - Bernard Schott, Sep 17 2022

Examples

			1.5000000000000000000000000000000000000000000000000000000000...
		

Crossrefs

Cf. A000292 (tetrahedral numbers).
Sums of inverses: A002117 (cubes), A175577 (octahedral numbers), A295421 (dodecahedral numbers), A175578 (icosahedral numbers).
Cf. A002194, A020821, A104956 (other trigonometric inequalities).

Programs

A375069 Decimal expansion of the sagitta of a regular hexagon with unit side length.

Original entry on oeis.org

1, 3, 3, 9, 7, 4, 5, 9, 6, 2, 1, 5, 5, 6, 1, 3, 5, 3, 2, 3, 6, 2, 7, 6, 8, 2, 9, 2, 4, 7, 0, 6, 3, 8, 1, 6, 5, 2, 8, 5, 9, 7, 3, 7, 3, 0, 9, 4, 8, 0, 9, 6, 8, 5, 9, 7, 2, 0, 9, 6, 5, 1, 0, 2, 7, 4, 0, 3, 3, 4, 9, 1, 5, 4, 5, 5, 9, 9, 9, 8, 1, 4, 5, 9, 4, 2, 6, 9, 0, 6
Offset: 0

Views

Author

Paolo Xausa, Jul 30 2024

Keywords

Examples

			0.133974596215561353236276829247063816528597373...
		

Crossrefs

Essentially the same as A334843.
Cf. A010527 (apothem), A104956 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375068 (pentagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon).

Programs

Formula

Equals tan(Pi/12)/2 = A019913/2.
Equals 1 - sqrt(3)/2 = 1 - A010527.
Equals A152422^2 = (1 - A332133)^2. - Hugo Pfoertner, Jul 30 2024
Equals A334843-1/2. - R. J. Mathar, Aug 02 2024

A104954 Decimal expansion of the area of the regular triangle with circumradius 1.

Original entry on oeis.org

1, 2, 9, 9, 0, 3, 8, 1, 0, 5, 6, 7, 6, 6, 5, 7, 9, 7, 0, 1, 4, 5, 5, 8, 4, 7, 5, 6, 1, 2, 9, 4, 0, 4, 2, 7, 5, 2, 0, 7, 1, 0, 3, 9, 4, 0, 3, 5, 7, 7, 8, 5, 4, 7, 1, 0, 4, 1, 8, 5, 5, 2, 3, 4, 5, 8, 8, 9, 4, 9, 7, 6, 2, 6, 8, 1, 6, 0, 0, 0, 2, 7, 8, 1, 0, 8, 5, 9, 6, 4, 0, 0, 6, 7, 9, 3, 6, 4, 3, 1, 7, 5, 6, 7, 1
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Mar 30 2005

Keywords

Comments

Equivalently, the area in the complex plane of the smallest convex set containing all order-3 roots of unity.

Examples

			1.299038105676657970145584756129404275207103940357785471...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Floor[n/2]*Sin[(2*Pi)/n] - Sin[(4*Pi*Floor[n/2])/n]/2 /. n -> 3, 108]][[1]]

Formula

Equals 3*sqrt(3)/4.
Equals (1/2)*A104956.
Equals 2F1(1/6,1/3 ; 1/2 ; 25/27). [Zucker] - R. J. Mathar, Jun 24 2024

Extensions

Edited by Georg Fischer, Jul 29 2021

A104955 Decimal expansion of the area of the regular 5-gon (pentagon) of circumradius = 1.

Original entry on oeis.org

2, 3, 7, 7, 6, 4, 1, 2, 9, 0, 7, 3, 7, 8, 8, 3, 9, 3, 0, 2, 9, 1, 0, 9, 8, 3, 3, 3, 4, 4, 8, 4, 5, 5, 3, 5, 8, 5, 1, 4, 2, 4, 6, 5, 8, 5, 3, 1, 4, 3, 7, 5, 5, 5, 6, 1, 1, 8, 2, 6, 4, 1, 1, 1, 0, 7, 5, 3, 8, 2, 9, 2, 5, 2, 1, 2, 9, 8, 3, 7, 5, 4, 2, 9, 6, 9, 8, 2, 0, 2, 7, 4, 2, 7, 0, 2, 8, 4, 5, 4, 1, 8, 9, 7, 4
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Mar 30 2005

Keywords

Comments

Equivalently, the area in the complex plane of the smallest convex set containing all order-5 roots of unity.

Examples

			2.377641290737883930291098333448455358514246585314375556118264111075382925212...
		

Crossrefs

Programs

  • Mathematica
    Floor[n/2]*Sin[(2*Pi)/n] - Sin[(4*Pi*Floor[n/2])/n]/2 /. n -> 5
    RealDigits[(5(Sqrt[(5+Sqrt[5])/2]))/4,10,120][[1]] (* Harvey P. Dale, Jul 21 2013 *)
  • PARI
    (5*sqrt((5 + sqrt(5))/2))/4 \\ Michel Marcus, Feb 24 2023

Formula

Equals (5*sqrt((5 + sqrt(5))/2))/4.

A104957 Decimal expansion of the area of the regular 7-gon (heptagon) of circumradius = 1.

Original entry on oeis.org

2, 7, 3, 6, 4, 1, 0, 1, 8, 8, 6, 3, 8, 1, 0, 4, 3, 3, 0, 4, 7, 9, 5, 5, 5, 8, 4, 3, 3, 5, 9, 2, 0, 2, 1, 2, 5, 8, 1, 3, 1, 7, 0, 8, 1, 5, 4, 8, 0, 4, 0, 6, 3, 5, 1, 4, 3, 2, 2, 2, 2, 3, 5, 3, 1, 5, 7, 8, 2, 1, 0, 6, 0, 7, 1, 8, 7, 7, 7, 5, 4, 5, 9, 5, 3, 0, 3, 8, 0, 2, 4, 1, 1, 8, 4, 6, 8, 4, 3, 7, 8, 1, 2, 9, 1
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Mar 30 2005

Keywords

Comments

Equivalently, the area in the complex plane of the smallest convex set containing all order-7 roots of unity.
The second largest root of 4096*x^6 - 87808*x^4 + 537824*x^2 - 823543 = 0. [Corrected by Sean A. Irvine, May 24 2025]

Examples

			2.736410188638104330479555843359202125813170815480406351432222353...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Floor[n/2]*Sin[(2*Pi)/n] - Sin[(4*Pi*Floor[n/2])/n]/2 /. n -> 7, 10, 100][[1]]
    RealDigits[Root[-823543 + 537824*#1^2 - 87808*#1^4 + 4096*#1^6 &, 5, 0], 10, 100][[1]]
  • PARI
    3*sin((2*Pi)/7) - sin((12*Pi)/7)/2 \\ Michel Marcus, Feb 25 2023

Formula

Equals 3*sin(2*Pi/7) - sin(12*Pi/7)/2.
Equals 7*cos(3*Pi/14)/2. - Amiram Eldar, Feb 25 2023
A root of 4096*x^6 -87808*x^4 +537824*x^2 -823543=0. - R. J. Mathar, Aug 29 2025

A178818 Decimal expansion of the diameter of the regular 7-gon (heptagon) of edge length 1.

Original entry on oeis.org

2, 0, 7, 6, 5, 2, 1, 3, 9, 6, 5, 7, 2, 3, 3, 6, 5, 6, 7, 1, 6, 3, 5, 3, 8, 8, 6, 1, 4, 8, 5, 8, 4, 0, 3, 3, 0, 7, 0, 5, 7, 2, 0, 2, 0, 6, 6, 2, 5, 9, 6, 8, 5, 2, 4, 0, 8, 3, 4, 1, 7, 3, 7, 6, 8, 6, 3, 0, 2, 8, 4, 8, 7, 0, 6, 4, 5, 9, 7, 7, 1, 7, 4, 6, 4, 4, 1, 7, 5, 5, 1, 5, 9, 7, 6, 0, 6, 2, 2, 5, 3, 5, 4, 8, 8
Offset: 1

Views

Author

Keywords

Examples

			2.07652139657233656716353886148584033070572020662596852408341737686302...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Cot(Pi(R)/7); // G. C. Greubel, Jan 22 2019
    
  • Maple
    evalf[120](cot(Pi/7)); # Muniru A Asiru, Jan 22 2019
  • Mathematica
    RealDigits[Cot[Pi/7],10, 100][[1]]
  • PARI
    default(realprecision, 100); cotan(Pi/7) \\ G. C. Greubel, Jan 22 2019
    
  • Sage
    numerical_approx(cot(pi/7), digits=100) # G. C. Greubel, Jan 22 2019

Formula

Digits of cot(Pi/7).
Largest of the 6 real-valued roots of 7*x^6 -35*x^4 +21*x^2 -1=0. - R. J. Mathar, Aug 29 2025

A176325 Decimal expansion of (5+3*sqrt(3))/2.

Original entry on oeis.org

5, 0, 9, 8, 0, 7, 6, 2, 1, 1, 3, 5, 3, 3, 1, 5, 9, 4, 0, 2, 9, 1, 1, 6, 9, 5, 1, 2, 2, 5, 8, 8, 0, 8, 5, 5, 0, 4, 1, 4, 2, 0, 7, 8, 8, 0, 7, 1, 5, 5, 7, 0, 9, 4, 2, 0, 8, 3, 7, 1, 0, 4, 6, 9, 1, 7, 7, 8, 9, 9, 5, 2, 5, 3, 6, 3, 2, 0, 0, 0, 5, 5, 6, 2, 1, 7, 1, 9, 2, 8, 0, 1, 3, 5, 8, 7, 2, 8, 6, 3, 5, 1, 3, 4, 3
Offset: 1

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of (5+3*sqrt(3))/2 is A010721.
a(n) = A104956(n) for n > 2.

Examples

			5.09807621135331594029...
		

Crossrefs

Cf. A002194 (decimal expansion of sqrt(3)), A104956 (decimal expansion of (3*sqrt(3))/2), A010721 (repeat 5, 10).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (5+3*Sqrt(3))/2; // G. C. Greubel, Dec 05 2019
    
  • Maple
    evalf( (5+3*sqrt(3))/2, 100); # G. C. Greubel, Dec 05 2019
  • Mathematica
    RealDigits[(5+3Sqrt[3])/2,10,120][[1]] (* Harvey P. Dale, May 20 2011 *)
  • PARI
    default(realprecision, 100); (5+3*sqrt(3))/2 \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    numerical_approx((5+3*sqrt(3))/2, digits=100) # G. C. Greubel, Dec 05 2019

A255606 Integer part of the area of a hexagon with side length n.

Original entry on oeis.org

2, 10, 23, 41, 64, 93, 127, 166, 210, 259, 314, 374, 439, 509, 584, 665, 750, 841, 937, 1039, 1145, 1257, 1374, 1496, 1623, 1756, 1893, 2036, 2184, 2338, 2496, 2660, 2829, 3003, 3182, 3367, 3556, 3751, 3951, 4156, 4367, 4583, 4803, 5029, 5261, 5497, 5739, 5985, 6237, 6495
Offset: 1

Views

Author

Kival Ngaokrajang, Feb 27 2015

Keywords

Comments

Column 4 of A255604.

Crossrefs

Programs

  • Mathematica
    Table[IntegerPart[(6*n^2/(4*Tan[Pi/6]))], {n, 50}] (* Michael De Vlieger, Mar 18 2015 *)
    Floor[3/2 Sqrt[3] Range[50]^2] (* Harvey P. Dale, Aug 25 2025 *)
  • PARI
    {for(n=1,100,a=floor(6*n^2/(4*tan(Pi/6)));print1(a,", "))}
    
  • PARI
    a(n) = sqrtint(27*n^4)>>1; \\ Kevin Ryde, May 07 2021

Formula

a(n) = floor(6*n^2/(4*tan(Pi/6))), n >= 1.
Previous Showing 11-20 of 30 results. Next