cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002117 Apéry's number or Apéry's constant zeta(3). Decimal expansion of zeta(3) = Sum_{m >= 1} 1/m^3.

Original entry on oeis.org

1, 2, 0, 2, 0, 5, 6, 9, 0, 3, 1, 5, 9, 5, 9, 4, 2, 8, 5, 3, 9, 9, 7, 3, 8, 1, 6, 1, 5, 1, 1, 4, 4, 9, 9, 9, 0, 7, 6, 4, 9, 8, 6, 2, 9, 2, 3, 4, 0, 4, 9, 8, 8, 8, 1, 7, 9, 2, 2, 7, 1, 5, 5, 5, 3, 4, 1, 8, 3, 8, 2, 0, 5, 7, 8, 6, 3, 1, 3, 0, 9, 0, 1, 8, 6, 4, 5, 5, 8, 7, 3, 6, 0, 9, 3, 3, 5, 2, 5, 8, 1, 4, 6, 1, 9, 9, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Sometimes called Apéry's constant.
"A natural question is whether Zeta(3) is a rational multiple of Pi^3. This is not known, though in 1978 R. Apéry succeeded in proving that Zeta(3) is irrational. In Chapter 8 we pointed out that the probability that two random integers are relatively prime is 6/Pi^2, which is 1/Zeta(2). This generalizes to: The probability that k random integers are relatively prime is 1/Zeta(k) ... ." [Stan Wagon]
In 2001 Tanguy Rivoal showed that there are infinitely many odd (positive) integers at which zeta is irrational, including at least one value j in the range 5 <= j <= 21 (refined the same year by Zudilin to 5 <= j <= 11), at which zeta(j) is irrational. See the Rivoal link for further information and references.
The reciprocal of this constant is the probability that three integers chosen randomly using uniform distribution are relatively prime. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2005
Also the value of zeta(1,2), the double zeta-function of arguments 1 and 2. - R. J. Mathar, Oct 10 2011
Also the length of minimal spanning tree for large complete graph with uniform random edge lengths between 0 and 1, cf. link to John Baez's comment. - M. F. Hasler, Sep 26 2017
Sum of the inverses of the cubes (A000578). - Michael B. Porter, Nov 27 2017
This number is the average value of sigma_2(n)/n^2 where sigma_2(n) is the sum of the squares of the divisors of n. - Dimitri Papadopoulos, Jan 07 2022

Examples

			1.2020569031595942853997...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 261.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 40-53, 500.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 84.
  • R. William Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, Computers in Mathematics (Stanford CA, 1986); Lecture Notes in Pure and Appl. Math., Dekker, New York, 125 (1990), 261-284; MR 91h:11154.
  • Xavier Gourdon, Analyse, Les Maths en tête, Ellipses, 1994, Exemple 3, page 224.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F17, Series associated with the zeta-function, p. 391.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press; 6 edition (2008), pp. 47, 268-269.
  • Paul Levrie, The Ubiquitous Apéry Number, Math. Intelligencer, Vol. 45, No. 2, 2023, pp. 118-119.
  • A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
  • Paul J. Nahin, In Pursuit of Zeta-3, Princeton University Press, 2021.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Stan Wagon, Mathematica In Action, W. H. Freeman and Company, NY, 1991, page 354.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 33.
  • A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Dover (1987), Ex. 92-93.

Crossrefs

Cf. A197070: 3*zeta(3)/4; A233090: 5*zeta(3)/8; A233091: 7*zeta(3)/8.
Cf. A000578 (cubes).
Cf. sums of inverses: A152623 (tetrahedral numbers), A175577 (octahedral numbers), A295421 (dodecahedral numbers), A175578 (icosahedral numbers).

Programs

  • Magma
    L:=RiemannZeta(: Precision:=100); Evaluate(L,3); // G. C. Greubel, Aug 21 2018
  • Maple
    # Calculates an approximation with n exact decimal places (small deviation
    # in the last digits are possible). Goes back to ideas of A. A. Markoff 1890.
    zeta3 := proc(n) local s, w, v, k; s := 0; w := -1; v := 4;
    for k from 2 by 2 to 7*n/2 do
        w := -w*v/k;
        v := v + 8;
        s := s + 1/(w*k^3);
    od; 20*s; evalf(%, n) end:
    zeta3(10000); # Peter Luschny, Jun 10 2020
  • Mathematica
    RealDigits[ N[ Zeta[3], 100] ] [ [1] ]
    (* Second program (historical interest): *)
    d[n_] := 34*n^3 + 51*n^2 + 27*n + 5; 6/Fold[Function[d[#2-1] - #2^6/#1], 5, Reverse[Range[100]]] // N[#, 108]& // RealDigits // First
    (* Jean-François Alcover, Sep 19 2014, after Apéry's continued fraction *)
  • Maxima
    fpprec : 100$ ev(bfloat(zeta(3)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    default(realprecision, 20080); x=zeta(3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002117.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
    
  • Python
    from mpmath import mp, apery
    mp.dps=109
    print([int(z) for z in list(str(apery).replace('.', ''))[:-1]]) # Indranil Ghosh, Jul 08 2017
    

Formula

Lima gives an approximation to zeta(3) as (236*log(2)^3)/197 - 283/394*Pi*log(2)^2 + 11/394*Pi^2*log(2) + 209/394*log(sqrt(2) + 1)^3 - 5/197 + (93*Catalan*Pi)/197. - Jonathan Vos Post, Oct 14 2009 [Corrected by Wouter Meeussen, Apr 04 2010]
zeta(3) = 5/2*Integral_(x=0..2*log((1+sqrt(5))/2), x^2/(exp(x)-1)) + 10/3*(log((1+sqrt(5))/2))^3. - Seiichi Kirikami, Aug 12 2011
zeta(3) = -4/3*Integral_{x=0..1} log(x)/x*log(1+x) = Integral_{x=0..1} log(x)/x*log(1-x) = -4/7*Integral_{x=0..1} log(x)/x*log((1+x)/(1-x)) = 4*Integral_{x=0..1} 1/x*log(1+x)^2 = 1/2*Integral_{x=0..1} 1/x*log(1-x)^2 = -16/7*Integral_{x=0..Pi/2} x*log(2*cos(x)) = -4/Pi*Integral_{x=0..Pi/2} x^2*log(2*cos(x)). - Jean-François Alcover, Apr 02 2013, after R. J. Mathar
From Peter Bala, Dec 04 2013: (Start)
zeta(3) = (16/7)*Sum_{k even} (k^3 + k^5)/(k^2 - 1)^4.
zeta(3) - 1 = Sum_{k >= 1} 1/(k^3 + 4*k^7) = 1/(5 - 1^6/(21 - 2^6/(55 - 3^6/(119 - ... - (n - 1)^6/((2*n - 1)*(n^2 - n + 5) - ...))))) (continued fraction).
More generally, there is a sequence of polynomials P(n,x) (of degree 2*n) such that
zeta(3) - Sum_{k = 1..n} 1/k^3 = Sum_{k >= 1} 1/( k^3*P(n,k-1)*P(n,k) ) = 1/((2*n^2 + 2*n + 1) - 1^6/(3*(2*n^2 + 2*n + 3) - 2^6/(5*(2*n^2 + 2*n + 7) - 3^6/(7*(2*n^2 + 2*n + 13) - ...)))) (continued fraction). See A143003 and A143007 for details.
Series acceleration formulas:
zeta(3) = (5/2)*Sum_{n >= 1} (-1)^(n+1)/( n^3*binomial(2*n,n) )
= (5/2)*Sum_{n >= 1} P(n)/( (2*n(2*n - 1))^3*binomial(4*n,2*n) )
= (5/2)*Sum_{n >= 1} (-1)^(n+1)*Q(n)/( (3*n(3*n - 1)*(3*n - 2))^3*binomial(6*n,3*n) ), where P(n) = 24*n^3 + 4*n^2 - 6*n + 1 and Q(n) = 9477*n^6 - 11421*n^5 + 5265*n^4 - 1701*n^3 + 558*n^2 - 108*n + 8 (Bala, section 7). (End)
zeta(3) = Sum_{n >= 1} (A010052(n)/n^(3/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(3/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(3) = Product_{k>=1} 1/(1 - 1/prime(k)^3). - Vaclav Kotesovec, Apr 30 2020
zeta(3) = 4*(2*log(2) - 1 - 2*Sum_{k>=2} zeta(2*k+1)/2^(2*k+1)). - Jorge Coveiro, Jun 21 2020
zeta(3) = (4*zeta'''(1/2)*(zeta(1/2))^2-12*zeta(1/2)*zeta'(1/2)*zeta''(1/2)+8*(zeta'(1/2))^3-Pi^3*(zeta(1/2))^3)/(28*(zeta(1/2))^3). - Artur Jasinski, Jun 27 2020
zeta(3) = Sum_{k>=1} H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 31 2020
From Artur Jasinski, Sep 30 2020: (Start)
zeta(3) = (5/4)*Li_3(1/f^2) + Pi^2*log(f)/6 - 5*log(f)^3/6,
zeta(3) = (8/7)*Li_3(1/2) + (2/21)*Pi^2 log(2) - (4/21) log(2)^3, where f is golden ratio (A001622) and Li_3 is the polylogarithm function, formulas published by John Landen in 1780, p. 118. (End)
zeta(3) = (1/2)*Integral_{x=0..oo} x^2/(e^x-1) dx (Gourdon). - Bernard Schott, Apr 28 2021
From Peter Bala, Jan 18 2022: (Start)
zeta(3) = 1 + Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)) = 25/24 + (2!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)) = 28333/27000 + (3!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)*(4*n^4 + 3^4)). In general, for k >= 1, we have zeta(3) = r(k) + (k!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*...*(4*n^4 + k^4)), where r(k) is rational.
zeta(3) = (6/7) + (64/7)*Sum_{n >= 1} n/(4*n^2 - 1)^3.
More generally, for k >= 0, it appears that zeta(3) = a(k) + b(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^3, where a(k) and b(k) are rational.
zeta(3) = (10/7) - (128/7)*Sum_{n >= 1} n/(4*n^2 - 1)^4.
More generally, for k >= 0, it appears that zeta(3) = c(k) + d(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^4, where c(k) and d(k) are rational. [added Nov 27 2023: for the values of a(k), b(k), c(k) and d(k) see the Bala 2023 link, Sections 8 and 9.]
zeta(3) = 2/3 + (2^13)/(3*7)*Sum_{n >= 1} n^3/(4*n^2 - 1)^6. (End)
zeta(3) = -Psi(2)(1/2)/14 (the second derivative of digamma function evaluated at 1/2). - Artur Jasinski, Mar 18 2022
zeta(3) = -(8*Pi^2/9) * Sum_{k>=0} zeta(2*k)/((2*k+1)*(2*k+3)*4^k) = (2*Pi^2/9) * (log(2) + 2 * Sum_{k>=0} zeta(2*k)/((2*k+3)*4^k)) (Scheufens, 2011, Glasser Math. Comp. 22 1968). - Amiram Eldar, May 28 2022
zeta(3) = Sum_{k>=1} (30*k-11) / (4*(2k-1)*k^3*(binomial(2k,k))^2) (Gosper, 1986 and Richard K. Guy reference). - Bernard Schott, Jul 20 2022
zeta(3) = (4/3)*Integral_{x >= 1} x*log(x)*(1 + log(x))*log(1 + 1/x^x) dx = (2/3)*Integral_{x >= 1} x^2*log(x)^2*(1 + log(x))/(1 + x^x) dx. - Peter Bala, Nov 27 2023
zeta_3(n) = 1/180*(-360*n^3*f(-3, n/4) + Pi^3*(n^4 + 20*n^2 + 16))/(n*(n^2 + 4)), where f(-3, n) = Sum_{k>=1} 1/(k^3*(exp(Pi*k/n) - 1)). Will give at least 1 digit of precision/term, example: zeta_3(5) = 1.202056944732.... - Simon Plouffe, Dec 21 2023
zeta(3) = 1 + (1/2)*Sum_{n >= 1} (2*n + 1)/(n^3*(n + 1)^3) = 5/4 - (1/4)*Sum_{n >= 1} (2*n + 1)/(n^4*(n + 1)^4) = 147/120 + (2/15)*Sum_{n >= 1} (2*n + 1)/(n^5*(n + 1)^5) - (64/15)*Sum_{n >= 1} (n + 1)/(n^5*(n + 2)^5) = 19/16 + (128/21)*Sum_{n >= 1} (n + 1)/(n^6*(n + 2)^6) - (1/21)*Sum_{n >= 1} (2*n + 1)/(n^6*(n + 1)^6). - Peter Bala, Apr 15 2024
Equals 7*Pi^3/180 - 2*Sum_{k>=1} 1/(k^3*(exp(2*Pi*k) - 1)) [Grosswald] (see Finch). - Stefano Spezia, Nov 01 2024
Equals 10*Integral_{x=0..1/2} arcsinh(x)^2/x dx = -5*Integral_{x=0..2*log(phi)} x*log(2*sinh(x/2))dx [Munthe Hjortnaes] (see Finch). - Stefano Spezia, Nov 03 2024
Equals Li_3(1) = Integral_{x=0..1} Li_2(x)/x dx = Integral_{x=0..1} Integral_{y=0..1} Li_1(xy)/xy dydx = Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} Li_0(xyz)/xyz dzdydx (see Beukers), in general Integral_{x_1,...,x_k=0..1} Li_{3-k}(Product_{n=1..k} x_n)/(Product_{n=1..k} x_n) dx_k...dx_1 = zeta(3), for any k > 0. - Miko Labalan, Dec 23 2024
zeta(3) = (1/2)*Sum_{m >= 1}(Sum_{n >= 1} 1/(m*n*(m+n))). - Ricardo Bittencourt, Feb 24 2025
zeta(3) = Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} 1/(1 - x*y*z) dz dy dx. - Kritsada Moomuang, May 22 2025
zeta(3) = Sum_{i, j >= 1} 1/(i^2*j*binomial(i+j, i)) = Sum_{k >= 1} 1/(k + 1)^2 * Sum_{j = 1..k} 1/j = zeta(2, 1) (multiple zeta value due to Euler). - Peter Bala, Aug 05 2025

Extensions

More terms from David W. Wilson
Additional comments from Robert G. Wilson v, Dec 08 2000
Quotation from Stan Wagon corrected by N. J. A. Sloane on Dec 24 2005. Thanks to Jose Brox for noticing this error.
Edited by M. F. Hasler, Sep 26 2017

A010527 Decimal expansion of sqrt(3)/2.

Original entry on oeis.org

8, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9, 3, 3, 7, 8, 6, 2, 4, 2, 8, 7, 8, 3, 7, 8, 1, 3
Offset: 0

Views

Author

Keywords

Comments

This is the ratio of the height of an equilateral triangle to its base.
Essentially the same sequence arises from decimal expansion of square root of 75, which is 8.6602540378443864676372317...
Also the real part of i^(1/3), the cubic root of i. - Stanislav Sykora, Apr 25 2012
Gilbert & Pollak conjectured that this is the Steiner ratio rho_2, the least upper bound of the ratio of the length of the Steiner minimal tree to the length of the minimal tree in dimension 2. (See Ivanov & Tuzhilin for the status of this conjecture as of 2012.) - Charles R Greathouse IV, Dec 11 2012
Surface area of a regular icosahedron with unit edge is 5*sqrt(3), i.e., 10 times this constant. - Stanislav Sykora, Nov 29 2013
Circumscribed sphere radius for a cube with unit edges. - Stanislav Sykora, Feb 10 2014
Also the ratio between the height and the pitch, used in the Unified Thread Standard (UTS). - Enrique Pérez Herrero, Nov 13 2014
Area of a 30-60-90 triangle with shortest side equal to 1. - Wesley Ivan Hurt, Apr 09 2016
If a, b, c are the sides of a triangle ABC and h_a, h_b, h_c the corresponding altitudes, then (h_a+h_b+h_c) / (a+b+c) <= sqrt(3)/2; equality is obtained only when the triangle is equilateral (see Mitrinovic reference). - Bernard Schott, Sep 26 2022

Examples

			0.86602540378443864676372317...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 8.2, 8.3 and 8.6, pp. 484, 489, and 504.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), pp. 450-451.
  • D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, and J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.8, page 114.

Crossrefs

Cf. A010153.
Cf. Platonic solids surfaces: A002194 (tetrahedron), A010469 (octahedron), A131595 (dodecahedron).
Cf. Platonic solids circumradii: A010503 (octahedron), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Cf. A126664 (continued fraction), A144535/A144536 (convergents).
Cf. A002194, A010502, A020821, A104956, A152623 (other geometric inequalities).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(3)/2; // G. C. Greubel, Nov 02 2018
  • Maple
    Digits:=100: evalf(sqrt(3)/2); # Wesley Ivan Hurt, Apr 09 2016
  • Mathematica
    RealDigits[Sqrt[3]/2, 10, 200][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
  • PARI
    default(realprecision, 20080); x=10*(sqrt(3)/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010527.txt", n, " ", d));  \\ Harry J. Smith, Jun 02 2009
    
  • PARI
    sqrt(3)/2 \\ Michel Marcus, Apr 10 2016
    

Formula

Equals cos(30 degrees). - Kausthub Gudipati, Aug 15 2011
Equals A002194/2. - Stanislav Sykora, Nov 30 2013
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/3) = cos(Pi/6).
Equals Integral_{x=0..Pi/3} cos(x) dx. (End)
Equals 1/(10*A020832). - Bernard Schott, Sep 29 2022
Equals x^(x^(x^...)) where x = (3/4)^(1/sqrt(3)) (infinite power tower). - Michal Paulovic, Jun 25 2023
Equals 2F1(-1/4,1/4 ; 1/2 ; 3/4) . - R. J. Mathar, Aug 31 2025

Extensions

Last term corrected and more terms added by Harry J. Smith, Jun 02 2009

A010502 Decimal expansion of square root of 48.

Original entry on oeis.org

6, 9, 2, 8, 2, 0, 3, 2, 3, 0, 2, 7, 5, 5, 0, 9, 1, 7, 4, 1, 0, 9, 7, 8, 5, 3, 6, 6, 0, 2, 3, 4, 8, 9, 4, 6, 7, 7, 7, 1, 2, 2, 1, 0, 1, 5, 2, 4, 1, 5, 2, 2, 5, 1, 2, 2, 2, 3, 2, 2, 7, 9, 1, 7, 8, 0, 7, 7, 3, 2, 0, 6, 7, 6, 3, 5, 2, 0, 0, 1, 4, 8, 3, 2, 4, 5, 8, 4, 7, 4, 7, 0, 2, 8, 9, 9, 4, 3, 0
Offset: 1

Views

Author

Keywords

Comments

sqrt(48)/10 is the area enclosed by Koch's fractal snowflake based on unit-sided equilateral triangle (actually 8/5 times the latter's area). - Lekraj Beedassy, Jan 06 2005
7+sqrt(48) is the ratio of outer to inner Soddy circles' radii for three identical kissing circles (see Soddy circles link). - Lekraj Beedassy, Feb 14 2006
Continued fraction expansion is 6 followed by {1, 12} repeated. - Harry J. Smith, Jun 06 2009
Let a, b, c the sides of a triangle ABC of area S, then 4*sqrt(3) <= (a^2+b^2+c^2) / S; equality is obtained only when the triangle is equilateral (see Mitrinovic reference). - Bernard Schott, Sep 27 2022
Surface area of a gyroelongated square bipyramid (Johnson solid J_17) with unit edges. - Paolo Xausa, Aug 02 2025

Examples

			6.928203230275509174109785366023489467771221015241522512223227917807732...
		

References

  • J. N. Kapur, Mathematics Enjoyment For The Millions, Problem 47 pp. 64-67, Arya Book Depot, New Delhi 2000.
  • D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.3, page 112.

Crossrefs

Cf. A040041 (continued fraction).
Cf. A002194, A104956, A010527, A152623 (other geometric inequalities).

Programs

  • Mathematica
    RealDigits[N[Sqrt[48],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(48); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010502.txt", n, " ", d));  \\ Harry J. Smith, Jun 06 2009

Formula

Equals 4*A002194. - R. J. Mathar, Jul 31 2010
Equals A176053/A246724 - 7 (2nd comment and Soddy link). - Bernard Schott, Mar 17 2022
Equals 1/A020805. - Bernard Schott, Sep 28 2022

A175577 Decimal expansion of the sum of the reciprocals of the octahedral numbers (A005900).

Original entry on oeis.org

1, 2, 7, 8, 1, 8, 5, 1, 5, 9, 0, 9, 0, 9, 4, 6, 1, 7, 9, 5, 4, 0, 3, 9, 0, 9, 4, 8, 3, 6, 7, 5, 7, 1, 3, 3, 8, 4, 2, 3, 9, 0, 1, 5, 3, 6, 8, 5, 1, 4, 0, 2, 0, 2, 0, 1, 7, 0, 3, 4, 6, 3, 8, 0, 4, 1, 6, 5, 7, 9, 9, 9, 1, 8, 3, 0, 6, 2, 0, 8, 2, 4, 4, 1, 8, 3, 6, 3, 2, 4, 5, 2, 0, 5, 0, 0, 7, 9, 6, 2, 3, 0, 5, 3, 9
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Defined by Sum_{n>=1} 1/A005900(n) = 1/1 + 1/6 + 1/19 + 1/44 + ...
Equals 3*(gamma + Re psi(i/sqrt 2) ) = 3* Re(A001620 + psi(i*A010503)) where psi(i*A010503) = -0.1511539... + i*2.3152942... is a digamma function and i the imaginary unit.

Examples

			1.2781851590909461795403909483...
		

Crossrefs

Cf. A005900 (octahedral numbers).
Cf. sums of inverses: A152623 (tetrahedral numbers), A002117 (cubes), A295421 (dodecahedral numbers), A175578 (icosahedral numbers).

Programs

  • Maple
    Digits := 120 : 3*(gamma+Psi(I/sqrt(2))); evalf(Re(%)) ;
  • Mathematica
    RealDigits[ 3/2*(2*EulerGamma + Re[PolyGamma[0, 1 - I/Sqrt[2]] + PolyGamma[0, 1 + I/Sqrt[2]]]), 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    3*Euler+3*real(psi(I/sqrt(2))) \\ Charles R Greathouse IV, Jul 19 2013
    
  • PARI
    sumnumrat(3/n/(2*n^2 + 1),1) \\ Charles R Greathouse IV, Feb 08 2023

A175578 Decimal expansion of the sum over the inverse icosahedral numbers.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 5, 9, 6, 6, 8, 9, 9, 2, 5, 1, 8, 8, 7, 5, 7, 3, 9, 3, 7, 5, 7, 9, 0, 1, 5, 8, 7, 9, 6, 4, 5, 3, 5, 3, 8, 1, 1, 4, 1, 6, 4, 8, 5, 5, 0, 4, 9, 8, 0, 6, 0, 6, 1, 7, 0, 2, 6, 9, 2, 9, 8, 1, 9, 2, 6, 0, 3, 3, 6, 1, 5, 4, 2, 6, 6, 9, 5, 8, 2, 6, 0, 9, 2, 1, 0, 6, 8, 8, 8, 7, 7, 8, 1, 0, 7, 2, 6, 4, 7
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Defined by sum_{n>=1} 1/A006564(n) = 1/1 + 1/12 +1/48 + 1/124 +...
Equals gamma + Pi*sqrt(5/3)*tanh(Pi*sqrt(15)/10)/2 + Re psi( 1/2+i*sqrt(15)/10 ), where psi is the digamma function, i the imaginary unit, Pi = A000796, sqrt(15)=A010472, gamma=A001620.

Examples

			1.12356596689925188757393..
		

Crossrefs

Cf. A006564 (icosahedral numbers).
Cf. sums of inverses: A152623 (tetrahedral numbers), A002117 (cubes), A175577 (octahedral numbers), A295421 (dodecahedral numbers).

Programs

  • Maple
    Digits := 120 : gamma+ Psi(1/2+sqrt(15)*I/10)+sqrt(15)/6*Pi*tanh(Pi*sqrt(15)/10) ; evalf(Re(%)) ;
  • Mathematica
    N[EulerGamma + PolyGamma[1/2 + (I*Sqrt[15])/10] + (1/2)*Tanh[(Pi*Sqrt[15])/10]*Pi*Sqrt[5/3] // Re, 105] // RealDigits // First (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    Euler+Pi*sqrt(5/3)*tanh(Pi*sqrt(15)/10)/2+real(psi(1/2+ I*sqrt(15)/10)) \\ Charles R Greathouse IV, Jul 19 2013

A295421 Decimal expansion of the sum of the reciprocals of the dodecahedral numbers (A006566).

Original entry on oeis.org

1, 0, 7, 2, 7, 8, 0, 6, 1, 3, 3, 4, 9, 1, 6, 2, 2, 3, 8, 7, 9, 8, 2, 4, 9, 5, 3, 1, 0, 7, 9, 4, 4, 5, 0, 4, 1, 4, 5, 4, 8, 6, 3, 5, 3, 5, 4, 0, 4, 9, 8, 6, 6, 8, 5, 7, 5, 2, 7, 8, 5, 9, 0, 2, 6, 2, 5, 9, 4, 3, 3, 3, 1, 8, 6, 1, 6, 1, 7, 3, 7, 5, 2, 1, 5, 7, 6
Offset: 1

Views

Author

Amiram Eldar, Nov 22 2017

Keywords

Examples

			1.07278061334916223879...
		

Crossrefs

Cf. A006566 (dodecahedral numbers).
Sums of inverses: A152623 (tetrahedral numbers), A002117 (cubes), A175577 (octahedral numbers), A175578 (icosahedral numbers).

Programs

  • Mathematica
    RealDigits[Sum[2/(n(3n-1)(3n-2)), {n, 1, Infinity}], 10, 100][[1]]
  • PARI
    (sqrt(3)*Pi - 3*log(3))/2 \\ Michel Marcus, Nov 23 2017

Formula

Sum_{n>=1} 2/(n(3n-1)(3n-2)) = 1/1 + 1/20 + 1/84 + 1/220 + 1/455 + ... = (sqrt(3)*Pi - 3*log(3))/2.

A377342 Decimal expansion of the volume of a truncated octahedron with unit edge length.

Original entry on oeis.org

1, 1, 3, 1, 3, 7, 0, 8, 4, 9, 8, 9, 8, 4, 7, 6, 0, 3, 9, 0, 4, 1, 3, 5, 0, 9, 7, 9, 3, 6, 7, 7, 5, 8, 4, 6, 2, 8, 5, 5, 7, 3, 7, 5, 0, 0, 3, 0, 1, 5, 5, 8, 4, 5, 8, 5, 4, 1, 3, 4, 3, 7, 9, 0, 3, 9, 2, 5, 8, 5, 9, 8, 2, 7, 6, 9, 6, 8, 5, 6, 3, 1, 0, 8, 0, 3, 1, 0, 0, 2
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			11.3137084989847603904135097936775846285573750030...
		

Crossrefs

Cf. A377341 (surface area), A020797 (circumradius/10), A152623 (midradius).
Cf. A131594 (analogous for a regular octahedron).

Programs

  • Mathematica
    First[RealDigits[8*Sqrt[2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedOctahedron", "Volume"], 10, 100]]

Formula

Equals 8*sqrt(2) = 8*A002193 = 4*A010466 = 2*A010487.

A230981 Decimal expansion of 3/(2^(1/2)).

Original entry on oeis.org

2, 1, 2, 1, 3, 2, 0, 3, 4, 3, 5, 5, 9, 6, 4, 2, 5, 7, 3, 2, 0, 2, 5, 3, 3, 0, 8, 6, 3, 1, 4, 5, 4, 7, 1, 1, 7, 8, 5, 4, 5, 0, 7, 8, 1, 3, 0, 6, 5, 4, 2, 2, 1, 0, 9, 7, 6, 5, 0, 1, 9, 6, 0, 6, 9, 8, 6, 0, 9, 8, 7, 1, 7, 6, 9, 3, 1, 6, 0, 5, 5, 8, 2, 7, 5, 5, 8, 1, 3, 0, 1, 4, 9, 1, 4, 6, 2, 3, 5, 9, 1, 0, 2, 5, 2
Offset: 1

Views

Author

Omar E. Pol, Dec 15 2013

Keywords

Comments

Also height of an isosceles triangle with two sides of length 5^(1/2) and base of length 2^(1/2).

Examples

			2.1213203435596425732025330863145471178545...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[3/Sqrt[2], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals 3/sqrt(2) = (2^(1/2))*3/2 = A002193*A152623.
Equals A176218 - 2. - R. J. Mathar, May 16 2023

A377341 Decimal expansion of the surface area of a truncated octahedron with unit edge length.

Original entry on oeis.org

2, 6, 7, 8, 4, 6, 0, 9, 6, 9, 0, 8, 2, 6, 5, 2, 7, 5, 2, 2, 3, 2, 9, 3, 5, 6, 0, 9, 8, 0, 7, 0, 4, 6, 8, 4, 0, 3, 3, 1, 3, 6, 6, 3, 0, 4, 5, 7, 2, 4, 5, 6, 7, 5, 3, 6, 6, 6, 9, 6, 8, 3, 7, 5, 3, 4, 2, 3, 1, 9, 6, 2, 0, 2, 9, 0, 5, 6, 0, 0, 4, 4, 4, 9, 7, 3, 7, 5, 4, 2
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			26.78460969082652752232935609807046840331366304572...
		

Crossrefs

Cf. A377342 (volume), A020797 (circumradius/10), A152623 (midradius).
Cf. A010469 (analogous for a regular octahedron).
Cf. A002194.

Programs

  • Mathematica
    First[RealDigits[6 + 12*Sqrt[3], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedOctahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 6 + 12*sqrt(3) = 6 + 12*A002194.

A333322 Decimal expansion of (3/8) * sqrt(3).

Original entry on oeis.org

6, 4, 9, 5, 1, 9, 0, 5, 2, 8, 3, 8, 3, 2, 8, 9, 8, 5, 0, 7, 2, 7, 9, 2, 3, 7, 8, 0, 6, 4, 7, 0, 2, 1, 3, 7, 6, 0, 3, 5, 5, 1, 9, 7, 0, 1, 7, 8, 8, 9, 2, 7, 3, 5, 5, 2, 0, 9, 2, 7, 6, 1, 7, 2, 9, 4, 4, 7, 4, 8, 8, 1, 3, 4, 0, 8, 0, 0, 0, 1, 3, 9, 0, 5, 4, 2, 9, 8, 2, 0, 0, 3, 3, 9, 6, 8, 2, 1, 5, 8, 7, 8, 3, 5, 9, 8, 0, 3, 0, 3, 0, 7, 7, 7, 5, 1, 3, 6, 3, 6
Offset: 0

Views

Author

Kritsada Moomuang, Mar 15 2020

Keywords

Comments

This is the area of the regular hexagon of diameter 1.
From Bernard Schott, Apr 09 2022 and Oct 01 2022: (Start)
For any triangle ABC, where (A,B,C) are the angles:
sin(A) * sin(B) * sin(C) <= (3/8) * sqrt(3) [Bottema reference],
cos(A/2) * cos(B/2) * cos(C/2) <= (3/8) * sqrt(3) [Mitrinovic reference],
and if (ha,hb,hc) are the altitude lengths and (a,b,c) the side lengths of this triangle [Scott Brown link]:
(ha+hb) * (hb+hc) * (hc+ha) / (a+b) * (b+c) * (c+a) <= (3/8) * sqrt(3).
The equalities are obtained only when triangle ABC is equilateral. (End)

Examples

			0.649519052838328985...
		

References

  • O. Bottema et al., Geometric Inequalities, Groningen, 1969, item 2.7, page 19.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.15, p. 526.
  • D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.2.2, page 111.

Crossrefs

Cf. A002194 (sqrt(3)), A104954.
Cf. A010527, A020821, A104956, A152623 (other geometric inequalities).

Programs

Formula

Equals A104954/2 or A104956/4.
Showing 1-10 of 10 results.