cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A248274 Egyptian fraction representation of sqrt(48) (A010502) using a greedy function.

Original entry on oeis.org

6, 2, 3, 11, 253, 121406, 26366884520, 849309519459745289215, 1275274072254463235178765644812100983170793, 6840927687383150447046638299623716679409134458251745775753167712124043749551513939746
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 48]]

A010527 Decimal expansion of sqrt(3)/2.

Original entry on oeis.org

8, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9, 3, 3, 7, 8, 6, 2, 4, 2, 8, 7, 8, 3, 7, 8, 1, 3
Offset: 0

Views

Author

Keywords

Comments

This is the ratio of the height of an equilateral triangle to its base.
Essentially the same sequence arises from decimal expansion of square root of 75, which is 8.6602540378443864676372317...
Also the real part of i^(1/3), the cubic root of i. - Stanislav Sykora, Apr 25 2012
Gilbert & Pollak conjectured that this is the Steiner ratio rho_2, the least upper bound of the ratio of the length of the Steiner minimal tree to the length of the minimal tree in dimension 2. (See Ivanov & Tuzhilin for the status of this conjecture as of 2012.) - Charles R Greathouse IV, Dec 11 2012
Surface area of a regular icosahedron with unit edge is 5*sqrt(3), i.e., 10 times this constant. - Stanislav Sykora, Nov 29 2013
Circumscribed sphere radius for a cube with unit edges. - Stanislav Sykora, Feb 10 2014
Also the ratio between the height and the pitch, used in the Unified Thread Standard (UTS). - Enrique Pérez Herrero, Nov 13 2014
Area of a 30-60-90 triangle with shortest side equal to 1. - Wesley Ivan Hurt, Apr 09 2016
If a, b, c are the sides of a triangle ABC and h_a, h_b, h_c the corresponding altitudes, then (h_a+h_b+h_c) / (a+b+c) <= sqrt(3)/2; equality is obtained only when the triangle is equilateral (see Mitrinovic reference). - Bernard Schott, Sep 26 2022

Examples

			0.86602540378443864676372317...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 8.2, 8.3 and 8.6, pp. 484, 489, and 504.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), pp. 450-451.
  • D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, and J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.8, page 114.

Crossrefs

Cf. A010153.
Cf. Platonic solids surfaces: A002194 (tetrahedron), A010469 (octahedron), A131595 (dodecahedron).
Cf. Platonic solids circumradii: A010503 (octahedron), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Cf. A126664 (continued fraction), A144535/A144536 (convergents).
Cf. A002194, A010502, A020821, A104956, A152623 (other geometric inequalities).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(3)/2; // G. C. Greubel, Nov 02 2018
  • Maple
    Digits:=100: evalf(sqrt(3)/2); # Wesley Ivan Hurt, Apr 09 2016
  • Mathematica
    RealDigits[Sqrt[3]/2, 10, 200][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
  • PARI
    default(realprecision, 20080); x=10*(sqrt(3)/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010527.txt", n, " ", d));  \\ Harry J. Smith, Jun 02 2009
    
  • PARI
    sqrt(3)/2 \\ Michel Marcus, Apr 10 2016
    

Formula

Equals cos(30 degrees). - Kausthub Gudipati, Aug 15 2011
Equals A002194/2. - Stanislav Sykora, Nov 30 2013
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/3) = cos(Pi/6).
Equals Integral_{x=0..Pi/3} cos(x) dx. (End)
Equals 1/(10*A020832). - Bernard Schott, Sep 29 2022
Equals x^(x^(x^...)) where x = (3/4)^(1/sqrt(3)) (infinite power tower). - Michal Paulovic, Jun 25 2023
Equals 2F1(-1/4,1/4 ; 1/2 ; 3/4) . - R. J. Mathar, Aug 31 2025

Extensions

Last term corrected and more terms added by Harry J. Smith, Jun 02 2009

A001108 a(n)-th triangular number is a square: a(n+1) = 6*a(n) - a(n-1) + 2, with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 8, 49, 288, 1681, 9800, 57121, 332928, 1940449, 11309768, 65918161, 384199200, 2239277041, 13051463048, 76069501249, 443365544448, 2584123765441, 15061377048200, 87784138523761, 511643454094368, 2982076586042449, 17380816062160328, 101302819786919521
Offset: 0

Views

Author

Keywords

Comments

b(0)=0, c(0)=1, b(i+1)=b(i)+c(i), c(i+1)=b(i+1)+b(i); then a(i) (the number in the sequence) is 2b(i)^2 if i is even, c(i)^2 if i is odd and b(n)=A000129(n) and c(n)=A001333(n). - Darin Stephenson (stephenson(AT)cs.hope.edu) and Alan Koch
For n > 1 gives solutions to A007913(2x) = A007913(x+1). - Benoit Cloitre, Apr 07 2002
If (X,X+1,Z) is a Pythagorean triple, then Z-X-1 and Z+X are in the sequence.
For n >= 2, a(n) gives exactly the positive integers m such that 1,2,...,m has a perfect median. The sequence of associated perfect medians is A001109. Let a_1,...,a_m be an (ordered) sequence of real numbers, then a term a_k is a perfect median if Sum_{j=1..k-1} a_j = Sum_{j=k+1..m} a_j. See Puzzle 1 in MSRI Emissary, Fall 2005. - Asher Auel, Jan 12 2006
This is the r=8 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Also, 1^3 + 2^3 + 3^3 + ... + a(n)^3 = k(n)^4 where k(n) is A001109. - Anton Vrba (antonvrba(AT)yahoo.com), Nov 18 2006
If T_x = y^2 is a triangular number which is also a square, the least number which is both triangular and square and greater than T_x is T_(3*x + 4*y + 1) = (2*x + 3*y + 1)^2 (W. Sierpiński 1961). - Richard Choulet, Apr 28 2009
If (a,b) is a solution of the Diophantine equation 0 + 1 + 2 + ... + x = y^2, then a or (a+1) is a perfect square. If (a,b) is a solution of the Diophantine equation 0 + 1 + 2 + ... + x = y^2, then a or a/8 is a perfect square. If (a,b) and (c,d) are two consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with a < c, then a+b = c-d and ((d+b)^2, d^2-b^2) is a solution, too. If (a,b), (c,d) and (e,f) are three consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with a < c < e, then (8*d^2, d*(f-b)) is a solution, too. - Mohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with p < r, then r = 3p + 4q + 1 and s = 2p + 3q + 1. - Mohamed Bouhamida, Sep 02 2009
Also numbers k such that (ceiling(sqrt(k*(k+1)/2)))^2 - k*(k+1)/2 = 0. - Ctibor O. Zizka, Nov 10 2009
From Lekraj Beedassy, Mar 04 2011: (Start)
Let x=a(n) be the index of the associated triangular number T_x=1+2+3+...+x and y=A001109(n) be the base of the associated perfect square S_y=y^2. Now using the identity S_y = T_y + T_{y-1}, the defining T_x = S_y may be rewritten as T_y = T_x - T_{y-1}, or 1+2+3+...+y = y+(y+1)+...+x. This solves the Strand Magazine House Number problem mentioned in A001109 in references from Poo-Sung Park and John C. Butcher. In a variant of the problem, solving the equation 1+3+5+...+(2*x+1) = (2*x+1)+(2*x+3)+...+(2*y-1) implies S_(x+1) = S_y - S_x, i.e., with (x,x+1,y) forming a Pythagorean triple, the solutions are given by pairs of x=A001652(n), y=A001653(n). (End)
If P = 8*n +- 1 is a prime, then P divides a((P-1)/2); e.g., 7 divides a(3) and 41 divides a(20). Also, if P = 8*n +- 3 is prime, then 4*P divides (a((P-1)/2) + a((P+1)/2) + 3). - Kenneth J Ramsey, Mar 05 2012
Starting at a(2), a(n) gives all the dimensions of Euclidean k-space in which the ratio of outer to inner Soddy hyperspheres' radii for k+1 identical kissing hyperspheres is rational. The formula for this ratio is (1+3k+2*sqrt(2k*(k+1)))/(k-1) where k is the dimension. So for a(3) = 49, the ratio is 6 in the 49th dimension. See comment for A010502. - Frank M Jackson, Feb 09 2013
Conjecture: For n>1 a(n) is the index of the first occurrence of -n in sequence A123737. - Vaclav Kotesovec, Jun 02 2015
For n=2*k, k>0, a(n) is divisible by 8 (deficient), so since all proper divisors of deficient numbers are deficient, then a(n) is deficient. For n=2*k+1, k>0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. sigma(a(5)) = 1723 < 3362 = 2*a(5). In either case, a(n) is deficient. - Muniru A Asiru, Apr 14 2016
The squares of NSW numbers (A008843) interleaved with twice squares from A084703, where A008843(n) = A002315(n)^2 and A084703(n) = A001542(n)^2. Conjecture: Also numbers n such that sigma(n) = A000203(n) and sigma(n-th triangular number) = A074285(n) are both odd numbers. - Jaroslav Krizek, Aug 05 2016
For n > 0, numbers for which the number of odd divisors of both n and of n + 1 is odd. - Gionata Neri, Apr 30 2018
a(n) will be solutions to some (A000217(k) + A000217(k+1))/2. - Art Baker, Jul 16 2019
For n >= 2, a(n) is the base for which A058331(A001109(n)) is a length-3 repunit. Example: for n=2, A001109(2)=6 and A058331(6)=73 and 73 in base a(2)=8 is 111. See Grantham and Graves. - Michel Marcus, Sep 11 2020

Examples

			a(1) = ((3 + 2*sqrt(2)) + (3 - 2*sqrt(2)) - 2) / 4 = (3 + 3 - 2) / 4 = 4 / 4 = 1;
a(2) = ((3 + 2*sqrt(2))^2 + (3 - 2*sqrt(2))^2 - 2) / 4 = (9 + 4*sqrt(2) + 8 + 9 - 4*sqrt(2) + 8 - 2) / 4 = (18 + 16 - 2) / 4 = (34 - 2) / 4 = 32 / 4 = 8, etc.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 10.
  • M. S. Klamkin, "International Mathematical Olympiads 1978-1985," (Supplementary problem N.T.6)
  • W. Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, pp. 21-22 MR2002669
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.

Crossrefs

Partial sums of A002315. A000129, A005319.
a(n) = A115598(n), n > 0. - Hermann Stamm-Wilbrandt, Jul 27 2014

Programs

  • Haskell
    a001108 n = a001108_list !! n
    a001108_list = 0 : 1 : map (+ 2)
       (zipWith (-) (map (* 6) (tail a001108_list)) a001108_list)
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Maple
    A001108:=-(1+z)/(z-1)/(z**2-6*z+1); # Simon Plouffe in his 1992 dissertation, without the leading 0
  • Mathematica
    Table[(1/2)(-1 + Sqrt[1 + Expand[8(((3 + 2Sqrt[2])^n - (3 - 2Sqrt[2])^n)/(4Sqrt[2]))^2]]), {n, 0, 100}] (* Artur Jasinski, Dec 10 2006 *)
    Transpose[NestList[{#[[2]],#[[3]],6#[[3]]-#[[2]]+2}&,{0,1,8},20]][[1]] (* Harvey P. Dale, Sep 04 2011 *)
    LinearRecurrence[{7, -7, 1}, {0, 1, 8}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
  • PARI
    a(n)=(real((3+quadgen(32))^n)-1)/2
    
  • PARI
    a(n)=(subst(poltchebi(abs(n)),x,3)-1)/2
    
  • PARI
    a(n)=if(n<0,a(-n),(polsym(1-6*x+x^2,n)[n+1]-2)/4)
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(1+x)/((1-x)*(1-6*x+x^2)))) \\ Altug Alkan, May 01 2018
    

Formula

a(0) = 0, a(n+1) = 3*a(n) + 1 + 2*sqrt(2*a(n)*(a(n)+1)). - Jim Nastos, Jun 18 2002
a(n) = floor( (1/4) * (3+2*sqrt(2))^n ). - Benoit Cloitre, Sep 04 2002
a(n) = A001653(k)*A001653(k+n) - A001652(k)*A001652(k+n) - A046090(k)*A046090(k+n). - Charlie Marion, Jul 01 2003
a(n) = A001652(n-1) + A001653(n-1) = A001653(n) - A046090(n) = (A001541(n)-1)/2 = a(-n). - Michael Somos, Mar 03 2004
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). - Antonio Alberto Olivares, Oct 23 2003
a(n) = Sum_{r=1..n} 2^(r-1)*binomial(2n, 2r). - Lekraj Beedassy, Aug 21 2004
If n > 1, then both A000203(n) and A000203(n+1) are odd numbers: n is either a square or twice a square. - Labos Elemer, Aug 23 2004
a(n) = (T(n, 3)-1)/2 with Chebyshev's polynomials of the first kind evaluated at x=3: T(n, 3) = A001541(n). - Wolfdieter Lang, Oct 18 2004
G.f.: x*(1+x)/((1-x)*(1-6*x+x^2)). Binet form: a(n) = ((3+2*sqrt(2))^n + (3-2*sqrt(2))^n - 2)/4. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
a(n) = floor(sqrt(2*A001110(n))) = floor(A001109(n)*sqrt(2)) = 2*(A000129(n)^2) - (n mod 2) = A001333(n)^2 - 1 + (n mod 2). - Henry Bottomley, Apr 19 2000, corrected by Eric Rowland, Jun 23 2017
A072221(n) = 3*a(n) + 1. - David Scheers, Dec 25 2006
A028982(a(n)) + 1 = A028982(a(n) + 1). - Juri-Stepan Gerasimov, Mar 28 2011
a(n+1)^2 + a(n)^2 + 1 = 6*a(n+1)*a(n) + 2*a(n+1) + 2*a(n). - Charlie Marion, Sep 28 2011
a(n) = 2*A001653(m)*A053141(n-m-1) + A002315(m)*A046090(n-m-1) + a(m) with m < n; otherwise, a(n) = 2*A001653(m)*A053141(m-n) - A002315(m)*A001652(m-n) + a(m). See Link to Generalized Proof re Square Triangular Numbers. - Kenneth J Ramsey, Oct 13 2011
a(n) = A048739(2n-2), n > 0. - Richard R. Forberg, Aug 31 2013
From Peter Bala, Jan 28 2014: (Start)
A divisibility sequence: that is, a(n) divides a(n*m) for all n and m. Case P1 = 8, P2 = 12, Q = 1 of the 3-parameter family of linear divisibility sequences found by Williams and Guy.
a(2*n+1) = A002315(n)^2 = Sum_{k = 0..4*n + 1} Pell(n), where Pell(n) = A000129(n).
a(2*n) = (1/2)*A005319(n)^2 = 8*A001109(n)^2.
(2,1) entry of the 2 X 2 matrix T(n,M), where M = [0, -3; 1, 4] and T(n,x) is the Chebyshev polynomial of the first kind. (End)
E.g.f.: exp(x)*(exp(2*x)*cosh(2*sqrt(2)*x) - 1)/2. - Stefano Spezia, Oct 25 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 19 2000
More terms from Lekraj Beedassy, Aug 21 2004

A103974 Smaller sides (a) in (a,a,a+1)-integer triangle with integer area.

Original entry on oeis.org

1, 5, 65, 901, 12545, 174725, 2433601, 33895685, 472105985, 6575588101, 91586127425, 1275630195845, 17767236614401, 247465682405765, 3446752317066305, 48007066756522501, 668652182274248705
Offset: 1

Views

Author

Zak Seidov, Feb 23 2005

Keywords

Comments

Corresponding areas are: 0, 12, 1848, 351780, 68149872, 13219419708, 2564481115560 (see A104009).
What is the next term? Is the sequence finite? The possible last two digits of "a" are (it may help in searching for more terms): {01, 05, 09, 15, 19, 25, 29, 33, 35, 39, 45, 49, 51, 55, 59, 65, 69, 75, 79, 83, 85, 89, 95, 99}.
Equivalently, positive integers a such that 3/16*a^4 + 1/4*a^3 - 1/8*a^2 - 1/4*a - 1/16 is a square (A000290), a direct result of Heron's formula. Conjecture: lim_{n->oo} a(n+1)/a(n) = 7 + 4*sqrt(3) (= 7 + A010502). - Rick L. Shepherd, Sep 04 2005
Values x^2 + y^2, where the pair (x, y) solves for x^2 - 3y^2=1, i.e., a(n)= (A001075(n))^2 + (A001353(n))^2 = A055793(n) + A098301(n). - Lekraj Beedassy, Jul 13 2006
Floretion Algebra Multiplication Program, FAMP Code: 1lestes[ 3'i - 2'j + 'k + 3i' - 2j' + k' - 4'ii' - 3'jj' + 4'kk' - 'ij' - 'ji' + 3'jk' + 3'kj' + 4e ]

Crossrefs

Cf. A011922, A007655, A001353, A102341, A103975, A016064, A011945, A010502 (4*sqrt(3)), A000290 (square numbers), A350916.

Programs

  • Maple
    A:=rsolve({-A(n+3)+15*A(n+2)-15*A(n+1)+A(n), A(0) = 1, A(1) = 5, A(2)=65}, A(n), makeproc); # Mihailovs
  • Mathematica
    f[n_] := Simplify[((2 + Sqrt[3])^(2n) + (2 - Sqrt[3])^(2n) + 1)/3]; Table[ f[n], {n, 0, 16}] (* Or *)
    a[1] = 1; a[2] = 5; a[3] = 65; a[n_] := a[n] = 15a[n - 1] - 15a[n - 2] + a[n - 3]; Table[ a[n], {n, 17}] (* Or *)
    CoefficientList[ Series[(1 - 10x + 5x^2)/(1 - 15x + 15x^2 - x^3), {x, 0, 16}], x] (* Or *)
    Range[0, 16]! CoefficientList[ Simplify[ Series[(E^x + E^((7 + 4Sqrt[3])x) + E^((7 - 4Sqrt[3])x))/3, {x, 0, 16}]], x] (* Robert G. Wilson v, Mar 24 2005 *)
  • PARI
    for(a=1,10^6, b=a; c=a+1; s=(a+b+c)/2; if(issquare(s*(s-a)*(s-b)*(s-c)), print1(a,","))) /* Uses Heron's formula */ \\ Rick L. Shepherd, Sep 04 2005

Formula

Composite of comments from Alec Mihailovs (alec(AT)mihailovs.com) and David Terr, Mar 07 2005: (Start)
"a(n)^2 = A011922(n)^2 + (4*A007655(n))^2, so that A011922(n) = 1/2 base of triangles, A007655(n) = 1/4 height of triangles (conjectured by Paul Hanna).
Area is (a+1)/4*sqrt((3*a+1)*(a-1)). If a is even, the numerator is odd and the area is not an integer. That means a=2*k-1. In this case, Area=k*sqrt((3*k-1)*(k-1)).
Solving equation (3*k-1)*(k-1)=y^2, we get k=(2+sqrt(1+3*y^2))/3. That means that 1+3*y^2=x^2 with integer x and y. This is a Pell equation, all solutions of which have the form x=((2+sqrt(3))^n+(2-sqrt(3))^n)/2, y=((2+sqrt(3))^n-(2-sqrt(3))^n)/(2*sqrt(3)). Therefore k=(x+2)/3 is an integer only for even n. Then a=2*k-1=(2*x+1)/3 with even n. Q.E.D.
a(n)=(1/3)*((2+sqrt(3))^(2*n-2)+(2-sqrt(3))^(2*n-2)+1).
Recurrence: a(n+3)=15*a(n+2)-15*a(n+1)+a(n), a(0)=1, a(1)=5, a(2)=65.
G.f.: x*(1-10*x+5*x^2)/(1-15*x+15*x^2-x^3).
E.g.f.: 1/3*(exp(x)+exp((7+4*sqrt(3))*x)+exp((7-4*sqrt(3))*x)).
a(n) = 4U(n)^2 + 1, where U(1) = 0, U(2)=1 and U(n+1) = 4U(n) - U(n-1) for n>1. (U(n), V(n)) is the n-th solution to Pell's equation 3U(n)^2 + 1 = V(n)^2. (U(n) is the sequence A001353.)" (End)
a(n+1) = A098301(n+1) + A055793(n+2) - Creighton Dement, Apr 18 2005
a(n) = floor((7+4*sqrt(3))*a(n-1))-4, n>=3. - Rick L. Shepherd, Sep 04 2005
a(n)= [1+14*A007655(n+2)-194*A007655(n+1)]/3. - R. J. Mathar, Nov 16 2007
For n>=3, a(n) = 14*a(n-1) - a(n-2) - 4. It is one of 10 second-order linear recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916. - Max Alekseyev, Jan 22 2022

Extensions

More terms from Creighton Dement, Apr 18 2005
Edited by Max Alekseyev, Jan 22 2022

A178789 a(n) = 4^(n-1) + 2: Number of acute angles after n iterations of the Koch snowflake construction.

Original entry on oeis.org

3, 6, 18, 66, 258, 1026, 4098, 16386, 65538, 262146, 1048578, 4194306, 16777218, 67108866, 268435458, 1073741826, 4294967298, 17179869186, 68719476738, 274877906946, 1099511627778, 4398046511106, 17592186044418, 70368744177666
Offset: 1

Views

Author

Keywords

Comments

Starting from an equilateral triangle, at each step each straight segment is replaced by a "/\" shape of four segments of equal length, with the acute angle in the middle pointing to the exterior. The sequence counts the angles which are (i.e., already were) at both extremities, plus the one newly created acute angle in the middle of each former segment. At step n, there are 3*4^(n-1) straight segments, therefore a(n+1) = a(n) + 3*4^(n-1). - M. F. Hasler, Dec 17 2013

Crossrefs

Programs

  • Magma
    [2^(2*(n-1)) + 2: n in [1..30]]; // Vincenzo Librandi, Feb 02 2013
    
  • Maple
    A178789:=n->2+4^(n-1); seq(A178789(n), n=1..30); # Wesley Ivan Hurt, Dec 17 2013
  • Mathematica
    a=b=3;lst={a};Do[a=a+b;b*=4;AppendTo[lst,a],{n,40}];lst
    Flatten[Table[2^(2*(n-1)) + 2, {n, 1, 50}]](* or *)   CoefficientList[Series[(3 - 9*x)/(1 - 5*x + 4*x^2),{x, 0, 100}], x] (* Vincenzo Librandi, Feb 02 2013 *)
  • PARI
    A178789=n->4^(n-1)+2  \\ - M. F. Hasler, Dec 17 2013

Formula

G.f.: 3*x*(1 - 3*x)/(1 - 5*x + 4*x^2).
a(n) = 3 * A047849(n-1).
a(n) = 2^(2*(n-1)) + 2. - Vincenzo Librandi, Feb 02 2013
a(n+1) = a(n) + 3*4^(n-1) = a(n) + A002001(n) for n > 0. - M. F. Hasler, Dec 17 2013
a(n) = 2 + A000302(n-1). - Omar E. Pol, Dec 18 2013

A040041 Continued fraction for sqrt(48).

Original entry on oeis.org

6, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1
Offset: 0

Views

Author

Keywords

Examples

			6.9282032302755091741097853... = 6 + 1/(1 + 1/(12 + 1/(1 + 1/(12 + ...)))). - _Harry J. Smith_, Jun 06 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010502 (decimal expansion).

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[48],300] (* Vladimir Joseph Stephan Orlovsky, Mar 07 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 24000); x=contfrac(sqrt(48)); for (n=0, 20000, write("b040041.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 06 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2^e) = 12, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 11/2^s). (End)
G.f.: (6 + x + 6*x^2)/(1 - x^2). - Stefano Spezia, Jul 27 2025

A041083 Denominators of continued fraction convergents to sqrt(48).

Original entry on oeis.org

1, 1, 13, 14, 181, 195, 2521, 2716, 35113, 37829, 489061, 526890, 6811741, 7338631, 94875313, 102213944, 1321442641, 1423656585, 18405321661, 19828978246, 256353060613, 276182038859, 3570537526921, 3846719565780, 49731172316281, 53577891882061
Offset: 0

Views

Author

Keywords

Comments

The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 12 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

Formula

From Colin Barker, Jul 15 2012: (Start)
a(n) = 14*a(n-2) - a(n-4).
G.f.: (1+x-x^2)/((1-4*x+x^2)*(1+4*x+x^2)). (End)
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = sqrt(3) + 2 and beta = sqrt(3) - 2 be the roots of the equation x^2 - sqrt(12)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 12 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 12*a(2*n) + a(2*n - 1). (End)

A354129 Decimal expansion of 7 + 4*sqrt(3).

Original entry on oeis.org

1, 3, 9, 2, 8, 2, 0, 3, 2, 3, 0, 2, 7, 5, 5, 0, 9, 1, 7, 4, 1, 0, 9, 7, 8, 5, 3, 6, 6, 0, 2, 3, 4, 8, 9, 4, 6, 7, 7, 7, 1, 2, 2, 1, 0, 1, 5, 2, 4, 1, 5, 2, 2, 5, 1, 2, 2, 2, 3, 2, 2, 7, 9, 1, 7, 8, 0, 7, 7, 3, 2, 0, 6, 7, 6, 3, 5, 2, 0, 0, 1, 4, 8, 3, 2, 4, 5, 8, 4, 7, 4, 7
Offset: 2

Views

Author

Stefano Spezia, May 18 2022

Keywords

Comments

The largest root of x^2 - 14*x + 1 = 0.
Apart from leading digits the same as A010502. - R. J. Mathar, May 24 2022

Examples

			13.92820323027550917410978536602...
		

Crossrefs

Cf. A002194, A010502, A019973 (square root), A354128 (multiplicative inverse).

Programs

  • Mathematica
    First[RealDigits[N[7+4Sqrt[3],92]]]

Formula

Equals (1 + sqrt(3))^4 / 4. - Vaclav Kotesovec, May 18 2022
Equals (2 + sqrt(3))^2 = A019973^2. - Jianing Song, May 27 2022
Equals exp(arccosh(7)). - Amiram Eldar, Jul 06 2023

A386740 Decimal expansion of the volume of an augmented sphenocorona with unit edges.

Original entry on oeis.org

1, 7, 5, 1, 0, 5, 3, 9, 0, 0, 3, 7, 1, 9, 2, 2, 4, 0, 1, 1, 9, 5, 4, 2, 7, 4, 3, 3, 1, 7, 3, 4, 2, 9, 2, 5, 1, 2, 5, 1, 1, 4, 8, 1, 5, 2, 7, 0, 4, 9, 5, 2, 2, 7, 8, 9, 5, 6, 0, 1, 7, 9, 2, 0, 1, 7, 5, 4, 3, 1, 3, 5, 0, 3, 8, 8, 0, 1, 3, 8, 1, 4, 4, 6, 5, 9, 8, 8, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 01 2025

Keywords

Comments

The augmented sphenocorona is Johnson solid J_87.

Examples

			1.7510539003719224011954274331734292512511481527...
		

Crossrefs

Cf. A010502 (surface area - 1).

Programs

  • Mathematica
    First[RealDigits[Sqrt[1 + 3*Sqrt[3/2] + Sqrt[13 + Sqrt[54]]]/2 + 1/Sqrt[18], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J87", "Volume"], 10, 100]]

Formula

Equals sqrt(1 + 3*sqrt(3/2) + sqrt(13 + 3*sqrt(6)))/2 + 1/(3*sqrt(2)) = sqrt(1 + 3*A115754 + sqrt(13 + A010507))/2 + A020775.
Equals A386739 + A020775.
Equals the largest real root of 45137758519296*x^16 - 110336743047168*x^14 - 191069246324736*x^12 + 209269081571328*x^10 + 364547659290624*x^8 - 58793017190400*x^6 + 3306865979520*x^4 - 1275399855936*x^2 + 1439671249.

A041082 Numerators of continued fraction convergents to sqrt(48).

Original entry on oeis.org

6, 7, 90, 97, 1254, 1351, 17466, 18817, 243270, 262087, 3388314, 3650401, 47193126, 50843527, 657315450, 708158977, 9155223174, 9863382151, 127515808986, 137379191137, 1776066102630, 1913445293767
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[48], 30]] (* Vincenzo Librandi, Oct 25 2013 *)
    LinearRecurrence[{0,14,0,-1},{6,7,90,97},30] (* Harvey P. Dale, Aug 30 2020 *)

Formula

a(n) = 14*a(n-2)-a(n-4). G.f.: (6+7*x+6*x^2-x^3)/((1-4*x+x^2)*(1+4*x+x^2)). [Colin Barker, Jul 15 2012]
Showing 1-10 of 17 results. Next