cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A034444 a(n) is the number of unitary divisors of n (d such that d divides n, gcd(d, n/d) = 1).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 8
Offset: 1

Views

Author

Keywords

Comments

If n = Product p_i^a_i, d = Product p_i^c_i is a unitary divisor of n if each c_i is 0 or a_i.
Also the number of squarefree divisors of n. - Labos Elemer
Also number of divisors of the squarefree kernel of n: a(n) = A000005(A007947(n)). - Reinhard Zumkeller, Jul 19 2002
Also shadow transform of pronic numbers A002378.
For n >= 1 define an n X n (0,1) matrix A by A[i,j] = 1 if lcm(i,j) = n, A[i,j] = 0 if lcm(i,j) <> n for 1 <= i,j <= n. a(n) is the rank of A. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 11 2003
a(n) is also the number of solutions to x^2 - x == 0 (mod n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 21 2003
a(n) is the number of squarefree divisors of n, but in general the set of unitary divisors of n is not the set of squarefree divisors (compare the rows of A077610 and A206778). - Jaroslav Krizek, May 04 2009
Row lengths of the triangles in A077610 and in A206778. - Reinhard Zumkeller, Feb 12 2012
a(n) is also the number of distinct residues of k^phi(n) (mod n), k=0..n-1. - Michel Lagneau, Nov 15 2012
a(n) is the number of irreducible fractions y/x that satisfy x*y=n (and gcd(x,y)=1), x and y positive integers. - Luc Rousseau, Jul 09 2017
a(n) is the number of (x,y) lattice points satisfying both x*y=n and (x,y) is visible from (0,0), x and y positive integers. - Luc Rousseau, Jul 10 2017
Conjecture: For any nonnegative integer k and positive integer n, the sum of the k-th powers of the unitary divisors of n is divisible by the sum of the k-th powers of the odd unitary divisors of n (note that this sequence lists the sum of the 0th powers of the unitary divisors of n). - Ivan N. Ianakiev, Feb 18 2018
a(n) is the number of one-digit numbers, k, when written in base n such that k and k^2 end in the same digit. - Matthew Scroggs, Jun 01 2018
Dirichlet convolution of A271102 and A000005. - Vaclav Kotesovec, Apr 08 2019
Conjecture: Let b(i; n), n > 0, be multiplicative sequences for some fixed integer i >= 0 with b(i; p^e) = (Sum_{k=1..i+1} A164652(i, k) * e^(k-1)) * (i+2) / (i!) for prime p and e > 0. Then we have Dirichlet generating functions: Sum_{n > 0} b(i; n) / n^s = (zeta(s))^(i+2) / zeta((i+2) * s). Examples for i=0 this sequence, for i=1 A226602, and for i=2 A286779. - Werner Schulte, Feb 17 2022
The smallest integer with 2^m unitary divisors, or equivalently, the smallest integer with 2^m squarefree divisors, is A002110(m). - Bernard Schott, Oct 04 2022

Examples

			a(12) = 4 because the four unitary divisors of 12 are 1, 3, 4, 12, and also because the four squarefree divisors of 12 are 1, 2, 3, 6.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B3.

Crossrefs

Sum of the k-th powers of the squarefree divisors of n for k=0..10: this sequence (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: this sequence (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), this sequence (k=10).
Cf. A020821 (Dgf at s=2), A177057 (Dgf at s=4).

Programs

  • Haskell
    a034444 = length . a077610_row  -- Reinhard Zumkeller, Feb 12 2012
    
  • Magma
    [#[d:d in Divisors(n)|Gcd(d,n div d) eq 1]:n in [1..110]]; // Marius A. Burtea, Jan 11 2020
    
  • Magma
    [&+[Abs(MoebiusMu(d)):d in Divisors(n)]:n in [1..110]]; // Marius A. Burtea, Jan 11 2020
  • Maple
    with(numtheory): for n from 1 to 200 do printf(`%d,`,2^nops(ifactors(n)[2])) od:
    with(numtheory);
    # returns the number of unitary divisors of n and a list of them
    f:=proc(n)
    local ct,i,t1,ans;
    ct:=0; ans:=[];
    t1:=divisors(n);
    for i from 1 to nops(t1) do
    d:=t1[i];
    if igcd(d,n/d)=1 then ct:=ct+1; ans:=[op(ans),d]; fi;
    od:
    RETURN([ct,ans]);
    end;
    # N. J. A. Sloane, May 01 2013
    # alternative Maple program:
    a:= n-> 2^nops(ifactors(n)[2]):
    seq(a(n), n=1..105);  # Alois P. Heinz, Jan 23 2024
    a := n -> 2^NumberTheory:-NumberOfPrimeFactors(n, distinct):  # Peter Luschny, May 13 2025
  • Mathematica
    a[n_] := Count[Divisors[n], d_ /; GCD[d, n/d] == 1]; a /@ Range[105] (* Jean-François Alcover, Apr 05 2011 *)
    Table[2^PrimeNu[n],{n,110}] (* Harvey P. Dale, Jul 14 2011 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+X)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Sep 26 2020
    
  • Python
    from sympy import divisors, gcd
    def a(n):
        return sum(1 for d in divisors(n) if gcd(d, n//d)==1)
    # Indranil Ghosh, Apr 16 2017
    
  • Python
    from sympy import primefactors
    def a(n): return 2**len(primefactors(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 16 2017
    
  • Scheme
    (define (A034444 n) (if (= 1 n) n (* 2 (A034444 (A028234 n))))) ;; Antti Karttunen, May 29 2017
    

Formula

a(n) = Sum_{d|n} abs(mu(n)) = 2^(number of different primes dividing n) = 2^A001221(n), with mu(n) = A008683(n). [Added Möbius formula. - Wolfdieter Lang, Jan 11 2020]
a(n) = Product_{ primes p|n } (1 + Legendre(1, p)).
Multiplicative with a(p^k)=2 for p prime and k>0. - Henry Bottomley, Oct 25 2001
a(n) = Sum_{d|n} tau(d^2)*mu(n/d), Dirichlet convolution of A048691 and A008683. - Benoit Cloitre, Oct 03 2002
Dirichlet generating function: zeta(s)^2/zeta(2s). - Franklin T. Adams-Watters, Sep 11 2005
Inverse Mobius transform of A008966. - Franklin T. Adams-Watters, Sep 11 2005
Asymptotically [Finch] the cumulative sum of a(n) = Sum_{n=1..N} a(n) ~ (6/(Pi^2))*N*log(N) + (6/(Pi^2))*(2*gamma - 1 - (12/(Pi^2))*zeta'(2))*N + O(sqrt(N)). - Jonathan Vos Post, May 08 2005 [typo corrected by Vaclav Kotesovec, Sep 13 2018]
a(n) = Sum_{d|n} floor(rad(d)/d), where rad is A007947 and floor(rad(n)/n) = A008966(n). - Enrique Pérez Herrero, Nov 13 2009
a(n) = A000005(n) - A048105(n); number of nonzero terms in row n of table A225817. - Reinhard Zumkeller, Jul 30 2013
G.f.: Sum_{n>0} A008966(n)*x^n/(1-x^n). - Mircea Merca, Feb 25 2014
a(n) = Sum_{d|n} lambda(d)*mu(d), where lambda is A008836. - Enrique Pérez Herrero, Apr 27 2014
a(n) = A277561(A156552(n)). - Antti Karttunen, May 29 2017
a(n) = A005361(n^2)/A005361(n). - Velin Yanev, Jul 26 2017
L.g.f.: -log(Product_{k>=1} (1 - mu(k)^2*x^k)^(1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
a(n) = Sum_{d|n} A001615(d) * A023900(n/d). - Torlach Rush, Jan 20 2020
Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = 1. - Amiram Eldar, May 29 2020
a(n) = lim_{k->oo} A000005(n^(2*k))/A000005(n^k). - Velin Yanev and Amiram Eldar, Jan 10 2025

Extensions

More terms from James Sellers, Jun 20 2000

A010527 Decimal expansion of sqrt(3)/2.

Original entry on oeis.org

8, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9, 3, 3, 7, 8, 6, 2, 4, 2, 8, 7, 8, 3, 7, 8, 1, 3
Offset: 0

Views

Author

Keywords

Comments

This is the ratio of the height of an equilateral triangle to its base.
Essentially the same sequence arises from decimal expansion of square root of 75, which is 8.6602540378443864676372317...
Also the real part of i^(1/3), the cubic root of i. - Stanislav Sykora, Apr 25 2012
Gilbert & Pollak conjectured that this is the Steiner ratio rho_2, the least upper bound of the ratio of the length of the Steiner minimal tree to the length of the minimal tree in dimension 2. (See Ivanov & Tuzhilin for the status of this conjecture as of 2012.) - Charles R Greathouse IV, Dec 11 2012
Surface area of a regular icosahedron with unit edge is 5*sqrt(3), i.e., 10 times this constant. - Stanislav Sykora, Nov 29 2013
Circumscribed sphere radius for a cube with unit edges. - Stanislav Sykora, Feb 10 2014
Also the ratio between the height and the pitch, used in the Unified Thread Standard (UTS). - Enrique Pérez Herrero, Nov 13 2014
Area of a 30-60-90 triangle with shortest side equal to 1. - Wesley Ivan Hurt, Apr 09 2016
If a, b, c are the sides of a triangle ABC and h_a, h_b, h_c the corresponding altitudes, then (h_a+h_b+h_c) / (a+b+c) <= sqrt(3)/2; equality is obtained only when the triangle is equilateral (see Mitrinovic reference). - Bernard Schott, Sep 26 2022

Examples

			0.86602540378443864676372317...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 8.2, 8.3 and 8.6, pp. 484, 489, and 504.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), pp. 450-451.
  • D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, and J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.8, page 114.

Crossrefs

Cf. A010153.
Cf. Platonic solids surfaces: A002194 (tetrahedron), A010469 (octahedron), A131595 (dodecahedron).
Cf. Platonic solids circumradii: A010503 (octahedron), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Cf. A126664 (continued fraction), A144535/A144536 (convergents).
Cf. A002194, A010502, A020821, A104956, A152623 (other geometric inequalities).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(3)/2; // G. C. Greubel, Nov 02 2018
  • Maple
    Digits:=100: evalf(sqrt(3)/2); # Wesley Ivan Hurt, Apr 09 2016
  • Mathematica
    RealDigits[Sqrt[3]/2, 10, 200][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
  • PARI
    default(realprecision, 20080); x=10*(sqrt(3)/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010527.txt", n, " ", d));  \\ Harry J. Smith, Jun 02 2009
    
  • PARI
    sqrt(3)/2 \\ Michel Marcus, Apr 10 2016
    

Formula

Equals cos(30 degrees). - Kausthub Gudipati, Aug 15 2011
Equals A002194/2. - Stanislav Sykora, Nov 30 2013
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/3) = cos(Pi/6).
Equals Integral_{x=0..Pi/3} cos(x) dx. (End)
Equals 1/(10*A020832). - Bernard Schott, Sep 29 2022
Equals x^(x^(x^...)) where x = (3/4)^(1/sqrt(3)) (infinite power tower). - Michal Paulovic, Jun 25 2023
Equals 2F1(-1/4,1/4 ; 1/2 ; 3/4) . - R. J. Mathar, Aug 31 2025

Extensions

Last term corrected and more terms added by Harry J. Smith, Jun 02 2009

A152623 Decimal expansion of 3/2.

Original entry on oeis.org

1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Comments

Sum of the inverses of the tetrahedral numbers (A000292). - Michael B. Porter, Nov 27 2017
For any triangle ABC, cos A + cos B + cos C <= 3/2; equality is obtained only when the triangle is equilateral (see the Kiran S. Kedlaya link). - Bernard Schott, Sep 17 2022

Examples

			1.5000000000000000000000000000000000000000000000000000000000...
		

Crossrefs

Cf. A000292 (tetrahedral numbers).
Sums of inverses: A002117 (cubes), A175577 (octahedral numbers), A295421 (dodecahedral numbers), A175578 (icosahedral numbers).
Cf. A002194, A020821, A104956 (other trigonometric inequalities).

Programs

A140066 a(n) = (5*n^2 - 11*n + 8)/2.

Original entry on oeis.org

1, 3, 10, 22, 39, 61, 88, 120, 157, 199, 246, 298, 355, 417, 484, 556, 633, 715, 802, 894, 991, 1093, 1200, 1312, 1429, 1551, 1678, 1810, 1947, 2089, 2236, 2388, 2545, 2707, 2874, 3046, 3223, 3405, 3592, 3784, 3981, 4183, 4390, 4602, 4819, 5041, 5268, 5500, 5737
Offset: 1

Views

Author

Gary W. Adamson, May 03 2008

Keywords

Comments

Binomial transform of [1, 2, 5, 0, 0, 0, ...] = A020821.

Examples

			a(4) = 22 = (1, 3, 3, 1) dot (1, 2, 5, 0) = (1, + 6 + 15 + 0).
		

Crossrefs

Programs

  • Maple
    seq((8-11*n+5*n^2)*1/2,n=1..40); # Emeric Deutsch, May 07 2008
  • Mathematica
    Table[(5n^2-11n+8)/2,{n,40}] (* or *) LinearRecurrence[{3,-3,1},{1,3,10},40] (* Harvey P. Dale, Jan 28 2012 *)
  • PARI
    a(n)=(5*n^2-11*n+8)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

A007318 * [1, 2, 5, 0, 0, 0, ...].
From R. J. Mathar, May 06 2008: (Start)
a(n) = A000217(n) + 4*A000217(n-2).
O.g.f.: x*(1+4*x^2)/(1-x)^3. (End)
a(n) = (8 - 11*n + 5*n^2)/2. - Emeric Deutsch, May 07 2008
a(n) = a(n-1) + 5*n - 8 (with a(1)=1). - Vincenzo Librandi, Nov 24 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=3, a(3)=10. - Harvey P. Dale, Jan 28 2012
E.g.f.: exp(x)*(4 - 3*x + 5*x^2/2) - 4. - Elmo R. Oliveira, Oct 31 2024

Extensions

More terms from R. J. Mathar and Emeric Deutsch, May 06 2008

A021102 Decimal expansion of 1/98.

Original entry on oeis.org

0, 1, 0, 2, 0, 4, 0, 8, 1, 6, 3, 2, 6, 5, 3, 0, 6, 1, 2, 2, 4, 4, 8, 9, 7, 9, 5, 9, 1, 8, 3, 6, 7, 3, 4, 6, 9, 3, 8, 7, 7, 5, 5, 1, 0, 2, 0, 4, 0, 8, 1, 6, 3, 2, 6, 5, 3, 0, 6, 1, 2, 2, 4, 4, 8, 9, 7, 9, 5, 9, 1, 8, 3, 6, 7, 3, 4, 6, 9, 3, 8, 7, 7, 5, 5, 1, 0, 2, 0, 4, 0, 8, 1, 6, 3, 2, 6, 5, 3
Offset: 0

Views

Author

Keywords

Comments

Generalization:
1/8 = sum (2^i/10^(i+1)), i >= 0,
1/98 = sum (2^i/100^(i+1)), i >= 0, (this sequence)
1/998 = sum (2^i/1000^(i+1)), i >= 0,
1/9998 = sum (2^i/10000^(i+1)), i >= 0, ... - Daniel Forgues, Oct 28 2011

Crossrefs

Cf. A020821 (1/8), A022002 (1/998), A236799 (1/9998).

Programs

  • Mathematica
    Join[{0},RealDigits[1/98,10,120][[1]]] (* Harvey P. Dale, May 29 2013 *)

A022002 Decimal expansion of 1/998.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 1, 6, 0, 3, 2, 0, 6, 4, 1, 2, 8, 2, 5, 6, 5, 1, 3, 0, 2, 6, 0, 5, 2, 1, 0, 4, 2, 0, 8, 4, 1, 6, 8, 3, 3, 6, 6, 7, 3, 3, 4, 6, 6, 9, 3, 3, 8, 6, 7, 7, 3, 5, 4, 7, 0, 9, 4, 1, 8, 8, 3, 7, 6, 7, 5, 3, 5, 0, 7, 0, 1, 4, 0, 2, 8, 0, 5, 6, 1, 1, 2, 2, 2, 4, 4, 4
Offset: 0

Views

Author

Keywords

Comments

Generalization:
1/8 = sum (2^i/10^(i+1)), i >= 0,
1/98 = sum (2^i/100^(i+1)), i >= 0,
1/998 = sum (2^i/1000^(i+1)), i >= 0, (this sequence)
1/9998 = sum (2^i/10000^(i+1)), i >= 0, ... - Daniel Forgues, Oct 28 2011

Crossrefs

Cf. A020821 (1/8), , A021102 (1/98), A236799 (1/9998).

A069181 Decimal expansion of 1/1024.

Original entry on oeis.org

0, 0, 0, 9, 7, 6, 5, 6, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Rick L. Shepherd, Apr 10 2002

Keywords

Crossrefs

Cf. A021516 (1/512), A021260 (1/256), A021132 (1/128), A021068 (1/64), A021036 (1/32), A021020 (1/16), A020821 (1/8), A020773 (1/4), A020761 (1/2).

Programs

  • Mathematica
    Join[{0,0,0},RealDigits[1/1024,10,120][[1]]] (* or *) PadRight[ {0,0,0,9,7,6,5,6,2,5},120,{0}] (* Harvey P. Dale, Jan 26 2019 *)

A214174 Decimal expansion of Integral_{x=0..oo} x/cosh(Pi*x) dx.

Original entry on oeis.org

1, 8, 5, 6, 1, 3, 4, 3, 6, 3, 5, 5, 3, 8, 6, 0, 8, 1, 4, 7, 6, 9, 8, 1, 9, 9, 0, 1, 9, 9, 7, 1, 9, 9, 8, 5, 6, 0, 9, 4, 3, 0, 4, 5, 9, 1, 3, 1, 2, 9, 3, 2, 0, 5, 4, 0, 7, 6, 0, 1, 9, 1, 9, 3, 9, 1, 1, 2, 6, 1, 2, 1, 2, 8, 7, 5, 7, 7, 7, 5, 1, 7, 9, 1, 7, 2, 7
Offset: 0

Views

Author

Bruno Berselli, Mar 20 2013

Keywords

Comments

This sequence is between A020761 [Integral_{x=0..oo} x^0/cosh(Pi*x) dx] and A020821 [Integral_{x=0..oo} x^2/cosh(Pi*x) dx].

Examples

			0.1856134363553860814769819901997199856094304591312932054076019...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 2*Catalan(R)/Pi(R)^2; // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[2 Catalan/Pi^2, 10, 90][[1]]
  • PARI
    default(realprecision, 100); 2*Catalan/Pi^2 \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals A060294*A143233 = 2*C/Pi^2, where C is Catalan's constant (A006752).

A333322 Decimal expansion of (3/8) * sqrt(3).

Original entry on oeis.org

6, 4, 9, 5, 1, 9, 0, 5, 2, 8, 3, 8, 3, 2, 8, 9, 8, 5, 0, 7, 2, 7, 9, 2, 3, 7, 8, 0, 6, 4, 7, 0, 2, 1, 3, 7, 6, 0, 3, 5, 5, 1, 9, 7, 0, 1, 7, 8, 8, 9, 2, 7, 3, 5, 5, 2, 0, 9, 2, 7, 6, 1, 7, 2, 9, 4, 4, 7, 4, 8, 8, 1, 3, 4, 0, 8, 0, 0, 0, 1, 3, 9, 0, 5, 4, 2, 9, 8, 2, 0, 0, 3, 3, 9, 6, 8, 2, 1, 5, 8, 7, 8, 3, 5, 9, 8, 0, 3, 0, 3, 0, 7, 7, 7, 5, 1, 3, 6, 3, 6
Offset: 0

Views

Author

Kritsada Moomuang, Mar 15 2020

Keywords

Comments

This is the area of the regular hexagon of diameter 1.
From Bernard Schott, Apr 09 2022 and Oct 01 2022: (Start)
For any triangle ABC, where (A,B,C) are the angles:
sin(A) * sin(B) * sin(C) <= (3/8) * sqrt(3) [Bottema reference],
cos(A/2) * cos(B/2) * cos(C/2) <= (3/8) * sqrt(3) [Mitrinovic reference],
and if (ha,hb,hc) are the altitude lengths and (a,b,c) the side lengths of this triangle [Scott Brown link]:
(ha+hb) * (hb+hc) * (hc+ha) / (a+b) * (b+c) * (c+a) <= (3/8) * sqrt(3).
The equalities are obtained only when triangle ABC is equilateral. (End)

Examples

			0.649519052838328985...
		

References

  • O. Bottema et al., Geometric Inequalities, Groningen, 1969, item 2.7, page 19.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.15, p. 526.
  • D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.2.2, page 111.

Crossrefs

Cf. A002194 (sqrt(3)), A104954.
Cf. A010527, A020821, A104956, A152623 (other geometric inequalities).

Programs

Formula

Equals A104954/2 or A104956/4.

A021108 Decimal expansion of 1/104.

Original entry on oeis.org

0, 0, 9, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4
Offset: 0

Views

Author

Keywords

Comments

After 9, periodic with period 6: [6, 1, 5, 3, 8, 4]. See also A021030 (1/26), A021069 (1/65), A021420 (1/416), A021654 (1/650). - Bruno Berselli, Apr 13 2018

Examples

			0.009615384615384615384615384615384615384615384615384615384615384...
		

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[1/104, 10, 120][[1]]] (* or *) PadRight[{0, 0, 9, 6}, 120,{3, 8, 4, 6, 1, 5}] (* Harvey P. Dale, Aug 18 2012 *)

Formula

Equals A020821 * A021017 = A020773 * A021030 = A020761 * A021056. - Bruno Berselli, Apr 13 2018
Showing 1-10 of 10 results.