cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A132596 X-values of solutions to the equation X*(X + 1) - 6*Y^2 = 0.

Original entry on oeis.org

0, 2, 24, 242, 2400, 23762, 235224, 2328482, 23049600, 228167522, 2258625624, 22358088722, 221322261600, 2190864527282, 21687323011224, 214682365584962, 2125136332838400, 21036680962799042, 208241673295152024
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 14 2007

Keywords

Comments

Or, 3*A000217(X) is a square, (3*A004189(n))^2. - Zak Seidov, Apr 08 2009
"You can find an infinite number of [different] triangular numbers such that when multiplied together form a square number. For example, for every triangular number, T_n, there are an infinite number of other triangular numbers, T_m, such that T_n*T_m is a square. For example, T_2 * T_24 = 30^2." [Pickover] - Robert G. Wilson v, Apr 01 2010

References

  • Clifford A. Pickover, The Loom of God, Tapestries of Mathematics and Mysticism, Sterling, NY, 2009, page 33.

Crossrefs

Programs

Formula

a(n) = 10*a(n-1) - a(n-2) + 4, a(0)=0, a(1)=2.
a(n) = (A001079(n) - 1)/2. - Max Alekseyev, Nov 13 2009
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3) = 2*A098297(n).
G.f.: -2*x*(1+x) / ( (x-1)*(x^2-10*x+1) ). (End)
a(n) = 2*A098297(n) = (1/2)*(T(2*n,sqrt(3)) - 1), where T(n,x) is the n-th Chebyshev polynomial of the first kind. - Peter Bala, Dec 31 2012

A173130 a(n) = Cosh[(2 n - 1) ArcCosh[n]].

Original entry on oeis.org

0, 1, 26, 3363, 937444, 456335045, 343904160606, 371198523608647, 543466014742175624, 1036834190110356583689, 2499384905955651114739810, 7429238104512325157021090411, 26695718139185294187938997247212
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Cosh[(2 n - 1) ArcCosh[n]]], {n, 0, 20}] (* Artur Jasinski *)

Formula

a(n) ~ 2^(2*n-2) * n^(2*n-1). - Vaclav Kotesovec, Apr 05 2016

A173131 a(n) = (Cosh[(2n-1)ArcSinh[n]])^2.

Original entry on oeis.org

1, 2, 1445, 19740250, 1361599599377, 298514762397852026, 160545187370375075046277, 179656719395983409634002348450, 373368546362937441101158606899394625
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Cosh[(2 n - 1) ArcSinh[n]]^2], {n, 0, 10}] (* Artur Jasinski *)

Formula

a(n) ~ 2^(4*n-4) * n^(4*n-2). - Vaclav Kotesovec, Apr 05 2016

A173133 a(n) = Sinh[(2n-1) ArcSinh[n]].

Original entry on oeis.org

0, 1, 38, 4443, 1166876, 546365045, 400680904674, 423859315570607, 611038907405197432, 1151555487914640463209, 2748476184146759127540190, 8102732939160371170806346243, 28915133156938367486730067779348
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sinh[(2 n - 1) ArcSinh[n]]], {n, 0, 20}] (* Artur Jasinski *)
    Round[Table[1/2 (n - Sqrt[1 + n^2])^(2 n - 1) + 1/2 (n + Sqrt[1 + n^2])^(2 n - 1), {n, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)

Formula

a(n) = 1/2 (n - sqrt(1 + n^2))^(2 n - 1) + 1/2 (n + sqrt(1 + n^2))^(2 n - 1). - Artur Jasinski, Feb 14 2010

Extensions

Minor edits by Vaclav Kotesovec, Apr 05 2016

A173134 a(n) = Sinh[(2n-1)ArcCosh[n]]^2.

Original entry on oeis.org

-1, 0, 675, 11309768, 878801253135, 208241673295152024, 118270071682117442287235, 137788343929239264227213170608, 295355309179742652677310128859789375
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sinh[(2 n - 1) ArcCosh[n]]^2], {n, 0, 20}]

Formula

a(n) ~ 2^(4*n-4) * n^(4*n-2). - Vaclav Kotesovec, Apr 05 2016

A097726 Pell equation solutions (5*a(n))^2 - 26*b(n)^2 = -1 with b(n):=A097727(n), n >= 0.

Original entry on oeis.org

1, 103, 10505, 1071407, 109273009, 11144775511, 1136657829113, 115927953794015, 11823514629160417, 1205882564220568519, 122988198035868828521, 12543590317094399940623, 1279323224145592925115025, 130478425272533383961791927, 13307520054574259571177661529
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

a(-1) = -1. - Artur Jasinski, Feb 10 2010
5*a(n) gives the x-values in the solution to the Pell equation x^2 - 26*y^2 = -1. - Colin Barker, Aug 24 2013

Examples

			(x,y) = (5,1), (515,101), (52525,10301), ... give the positive integer solutions to x^2 - 26*y^2 = -1.
		

Crossrefs

Cf. A097725 for S(n, 102).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Mathematica
    Table[(1/5) Round[N[Sinh[(2 n - 1) ArcSinh[5]], 100]], {n, 1, 50}] (* Artur Jasinski, Feb 10 2010 *)
    CoefficientList[Series[(1 + x)/(1 - 102 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 13 2014 *)
    LinearRecurrence[{102,-1},{1,103},20] (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-102*x+x^2)) \\ Altug Alkan, Apr 05 2018

Formula

G.f.: (1 + x)/(1 - 102*x + x^2).
a(n) = S(n, 2*51) + S(n-1, 2*51) = S(2*n, 2*sqrt(26)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 5*i)/(5*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 102*a(n-1) - a(n-2) for n > 1; a(0)=1, a(1)=103. - Philippe Deléham, Nov 18 2008
a(n) = (1/5)*sinh((2*n-1)*arcsinh(5)), n >= 1. - Artur Jasinski, Feb 10 2010

Extensions

More terms from Harvey P. Dale, Aug 20 2017

A278620 Expansion of x/(1 - 99*x + 99*x^2 - x^3).

Original entry on oeis.org

0, 1, 99, 9702, 950698, 93158703, 9128602197, 894509856604, 87652837344996, 8589083549953005, 841642535058049495, 82472379352138897506, 8081451533974553906094, 791899777950154143899707, 77598096787581131548265193, 7603821585405000737586089208, 745096917272902491151888477192
Offset: 0

Views

Author

Bruno Berselli, Nov 24 2016

Keywords

Crossrefs

First differences: A173205.

Programs

  • Maple
    P:=proc(q) local a,b,c,n; a:=0; b:=1; print(a); print(b);for n from 1 to q do
    c:=98*b-a+1; a:=b; b:=c; print(b); od; end: P(100); # Paolo P. Lava, Nov 30 2016
  • Mathematica
    CoefficientList[x/(1 - 99 x + 99 x^2 - x^3) + O[x]^20, x]
    LinearRecurrence[{99,-99,1},{0,1,99},20] (* Harvey P. Dale, Aug 22 2020 *)
  • Maxima
    makelist(coeff(taylor(x/((1-x)*(1-98*x+x^2)), x, 0, n), x, n), n, 0, 20);
  • PARI
    concat(0, Vec(1/(1-99*x+99*x^2-x^3) + O(x^20)))
    
  • Sage
    gf = x/((1-x)*(1-98*x+x^2)); print(taylor(gf, x, 0, 20).list())
    

Formula

O.g.f.: x/((1 - x)*(1 - 98*x + x^2)).
E.g.f.: ((5-2*sqrt(6))*exp((5-2*sqrt(6))^2*x) + (5+2*sqrt(6))*exp((5+2*sqrt(6))^2*x) - 10*exp(x))/960.
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>2.
a(n) = 98*a(n-1) - a(n-2) + 1 for n>1.
a(n) = a(-n-1) = ((5+2*sqrt(6))^(2*n+1) + (5-2*sqrt(6))^(2*n+1))/960 - 1/96.
a(n) = floor((5+2*sqrt(6))^(2*n+1)/960).
a(n)*a(n-2) = a(n-1)*(a(n-1)-1) for n>1.
Lim_{i -> infinity} a(i)/a(i-1) = (5 + 2*sqrt(6))^2.
From the closed form: a(n) + a(-n) = A108741(n).
a(n) = A200993(n)/10 = A200994(n)/15.
a(n) = A123479(n)/20 for n>0.
a(n) = A045502(n)/40.

A220186 Numbers n >= 0 such that n^2 + n*(n+1)/2 is a square.

Original entry on oeis.org

0, 8, 800, 78408, 7683200, 752875208, 73774087200, 7229107670408, 708378777612800, 69413891098384008, 6801852948864020000, 666512175097575576008, 65311391306613542428800, 6399849835873029582446408, 627119972524250285537319200
Offset: 1

Views

Author

Alex Ratushnyak, Apr 12 2013

Keywords

Comments

Equivalently, numbers n such that triangular(2*n) - triangular(n) is a square.

Crossrefs

Cf. A005449 (n^2 + n(n+1)/2).
Cf. A011916 (numbers n such that n^2 + n(n+1)/2 is a triangular number).
Cf. A014105 (n^2 + n(n+1)).
Cf. A084703 (numbers n such that n^2 + n(n+1) is a square).
Cf. A220185 (numbers n such that n^2 + n(n+1) is an oblong number).

Programs

  • C
    #include 
    #include 
    int main() {
      unsigned long long a, i, t;
      for (i=0; i < (1L<<32); ++i) {
          a = (i*i) + ((i+1)*i/2);
          t = sqrt(a);
          if (a == t*t)  printf("%llu\n", i);
      }
      return 0;
    }
    
  • Mathematica
    a[n_]:=Floor[(1/12)*(49 + 20*Sqrt[6])^n]; Table[a[n],{n,0,10}] (* Giovanni Resta, Apr 12 2013 *)
    LinearRecurrence[{99,-99,1},{0,8,800},20] (* Harvey P. Dale, Nov 01 2022 *)
  • PARI
    lista(nn) = for(n=0, nn, if(issquare(n^2 + n*(n+1)/2), print1(n, ", "))); \\ Altug Alkan, Mar 05 2016

Formula

a(n) = A098308(2*n-2).
a(1) = 0, a(2) = 8, a(3) = 800 and a(n) = 99*a(n-1)-99*a(n-2)+a(n-3) for n>3. - Giovanni Resta, Apr 12 2013
G.f.: -8*x^2*(x+1) / ((x-1)*(x^2-98*x+1)). - Colin Barker, May 31 2013
a(n) = (49+20*sqrt(6))^(-n)*(49+20*sqrt(6)-2*(49+20*sqrt(6))^n+(49-20*sqrt(6))*(49+20*sqrt(6))^(2*n))/12. - Colin Barker, Mar 05 2016
a(n) = 8*A108741(n). - R. J. Mathar, Feb 19 2017

A226500 Triangular numbers representable as 3 * x^2.

Original entry on oeis.org

0, 3, 300, 29403, 2881200, 282328203, 27665282700, 2710915376403, 265642041604800, 26030209161894003, 2550694855824007500, 249942065661590841003, 24491771739980078410800, 2399943688452386093417403, 235169989696593857076494700, 23044259046577745607403063203
Offset: 1

Views

Author

Alex Ratushnyak, Jun 09 2013

Keywords

Crossrefs

Cf. A029549 (triangular numbers representable as x^2 + x).

Programs

  • C
    #include 
    #include 
    typedef unsigned long long U64;
    U64 isTriangular(U64 a) {   // input must be < 1ULL<<63
        U64 r = sqrt(a*2);
        return (r*(r+1) == a*2);
    }
    int main() {
      for (U64 j, i = 0; (j=i*i*3) < (1ULL<<63); i++)
          if (isTriangular(j)) printf("%llu, ", j);
      return 0;
    }
  • Mathematica
    a[1]=0; a[2]=3; a[3]=300; a[n_] := a[n] = 99*(a[n-1] - a[n-2]) + a[n-3]; Array[a, 10] (* Giovanni Resta, Jun 09 2013 *)
    Rest@ CoefficientList[Series[3 x^2 (1 + x)/((1 - x) (1 - 98 x + x^2)), {x, 0, 16}], x] (* or *)
    3 LinearRecurrence[{99, -99, 1}, {0, 1, 100}, 16] (* Michael De Vlieger, Mar 03 2016, latter after Vincenzo Librandi at A108741 *)

Formula

a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3), for n > 3. a(n) = floor((49 + 20*sqrt(6))^(n-1)/32). - Giovanni Resta, Jun 09 2013
G.f.: 3*x^2*(1+x)/((1-x)*(1-98*x+x^2)); a(n)=3*A108741(n-1). - Joerg Arndt, Jun 10 2013
a(n) = (49+20*sqrt(6))^(-n)*(49+20*sqrt(6)-2*(49+20*sqrt(6))^n+(49-20*sqrt(6))*(49+20*sqrt(6))^(2*n))/32. - Colin Barker, Mar 03 2016

Extensions

a(12)-a(15) from Giovanni Resta, Jun 09 2013
Previous Showing 11-19 of 19 results.