cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A325127 Numbers in whose prime factorization the exponent of prime(k) is greater than k for all prime indices k.

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 64, 81, 108, 128, 216, 243, 256, 324, 432, 512, 625, 648, 729, 864, 972, 1024, 1296, 1728, 1944, 2048, 2187, 2500, 2592, 2916, 3125, 3456, 3888, 4096, 5000, 5184, 5832, 6561, 6912, 7776, 8192, 8748, 10000, 10368, 11664, 12500, 13824, 15552
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions where each part k appears more than k times. Such partitions are counted by A115584.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    4: {1,1}
    8: {1,1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  128: {1,1,1,1,1,1,1}
  216: {1,1,1,2,2,2}
  243: {2,2,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  324: {1,1,2,2,2,2}
  432: {1,1,1,1,2,2,2}
  512: {1,1,1,1,1,1,1,1,1}
  625: {3,3,3,3}
  648: {1,1,1,2,2,2,2}
  729: {2,2,2,2,2,2}
  864: {1,1,1,1,1,2,2,2}
  972: {1,1,2,2,2,2,2}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>PrimePi[p]]&]
    With[{k = 4}, m = Prime[k]^(k + 1); s = {}; Do[p = Prime[i]; AppendTo[s, Join[{1}, p^Range[i + 1, Floor[Log[p, m]]]]], {i, 1, k}]; Union @ Select[Times @@@ Tuples[s], # <= m &]] (* Amiram Eldar, Oct 24 2020 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^k * (prime(k)-1)) = 1.58661114052385082598.... - Amiram Eldar, Oct 24 2020

A360454 Numbers for which the prime multiplicities (or sorted signature) have the same median as the prime indices.

Original entry on oeis.org

1, 2, 9, 54, 100, 120, 125, 135, 168, 180, 189, 240, 252, 264, 280, 297, 300, 312, 336, 351, 396, 408, 440, 450, 456, 459, 468, 480, 513, 520, 528, 540, 552, 560, 588, 612, 616, 621, 624, 672, 680, 684, 696, 728, 744, 756, 760, 783, 816, 828, 837, 880, 882
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    9: {2,2}
   54: {1,2,2,2}
  100: {1,1,3,3}
  120: {1,1,1,2,3}
  125: {3,3,3}
  135: {2,2,2,3}
  168: {1,1,1,2,4}
  180: {1,1,2,2,3}
  189: {2,2,2,4}
  240: {1,1,1,1,2,3}
For example, the prime indices of 336 are {1,1,1,1,2,4} with median 1 and multiplicities {1,1,4} with median 1, so 336 is in the sequence.
		

Crossrefs

For mean instead of median we have A359903, counted by A360068.
For distinct indices instead of indices we have A360453, counted by A360455.
For distinct indices instead of multiplicities: A360249, counted by A360245.
These partitions are counted by A360456.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A240219 counts partitions with mean equal to median, ranked by A359889.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A359893 and A359901 count partitions by median.
A359894 counts partitions with mean different from median, ranks A359890.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Median[prix[#]]==Median[Length/@Split[prix[#]]]&]

A324587 Heinz numbers of integer partitions of n into distinct perfect squares (A033461).

Original entry on oeis.org

1, 2, 7, 14, 23, 46, 53, 97, 106, 151, 161, 194, 227, 302, 311, 322, 371, 419, 454, 541, 622, 661, 679, 742, 827, 838, 1009, 1057, 1082, 1193, 1219, 1322, 1358, 1427, 1589, 1619, 1654, 1879, 2018, 2114, 2143, 2177, 2231, 2386, 2437, 2438, 2741, 2854, 2933
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of distinct elements of A011757.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    7: {4}
   14: {1,4}
   23: {9}
   46: {1,9}
   53: {16}
   97: {25}
  106: {1,16}
  151: {36}
  161: {4,9}
  194: {1,25}
  227: {49}
  302: {1,36}
  311: {64}
  322: {1,4,9}
  371: {4,16}
  419: {81}
  454: {1,49}
  541: {100}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],And@@Cases[FactorInteger[#],{p_,k_}:>k==1&&IntegerQ[Sqrt[PrimePi[p]]]]&]

A325761 Heinz numbers of integer partitions whose length is itself a part.

Original entry on oeis.org

1, 2, 6, 9, 15, 20, 21, 30, 33, 39, 45, 50, 51, 56, 57, 69, 70, 75, 84, 87, 93, 105, 110, 111, 123, 125, 126, 129, 130, 140, 141, 159, 165, 170, 175, 176, 177, 183, 189, 190, 195, 196, 201, 210, 213, 219, 230, 237, 245, 249, 255, 264, 267, 275, 285, 290, 291
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A002865.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    6: {1,2}
    9: {2,2}
   15: {2,3}
   20: {1,1,3}
   21: {2,4}
   30: {1,2,3}
   33: {2,5}
   39: {2,6}
   45: {2,2,3}
   50: {1,3,3}
   51: {2,7}
   56: {1,1,1,4}
   57: {2,8}
   69: {2,9}
   70: {1,3,4}
   75: {2,3,3}
   84: {1,1,2,4}
   87: {2,10}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],MemberQ[PrimePi/@First/@FactorInteger[#],PrimeOmega[#]]&]

A307895 Numbers whose prime exponents, starting from the largest prime factor through to the smallest, form an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 19, 20, 23, 28, 29, 31, 37, 41, 43, 44, 45, 47, 52, 53, 59, 61, 63, 67, 68, 71, 73, 76, 79, 83, 89, 92, 97, 99, 101, 103, 107, 109, 113, 116, 117, 124, 127, 131, 137, 139, 148, 149, 151, 153, 157, 163, 164, 167, 171, 172, 173
Offset: 1

Views

Author

Gus Wiseman, May 04 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose multiplicities, starting from the largest part through to the smallest, form an initial interval of positive integers. The enumeration of these partitions by sum is given by A179269.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
   11: {5}
   12: {1,1,2}
   13: {6}
   17: {7}
   19: {8}
   20: {1,1,3}
   23: {9}
   28: {1,1,4}
   29: {10}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   44: {1,1,5}
   45: {2,2,3}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Last/@If[#==1,{},FactorInteger[#]]==Range[PrimeNu[#],1,-1]&]

A276936 Numbers m with at least one distinct prime factor prime(k) such that prime(k)^k divides, but prime(k)^(k+1) does not divide m.

Original entry on oeis.org

2, 6, 9, 10, 14, 18, 22, 26, 30, 34, 36, 38, 42, 45, 46, 50, 54, 58, 62, 63, 66, 70, 72, 74, 78, 82, 86, 90, 94, 98, 99, 102, 106, 110, 114, 117, 118, 122, 125, 126, 130, 134, 138, 142, 144, 146, 150, 153, 154, 158, 162, 166, 170, 171, 174, 178, 180, 182, 186, 190, 194, 198, 202, 206, 207, 210, 214, 218, 222, 225
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2016

Keywords

Comments

Numbers m with at least one prime factor such that the exponent of its highest power in m is equal to the index of that prime.
The asymptotic density of this sequence is 1 - Product_{k>=1} (1 - 1/prime(k)^k + 1/prime(k)^(k+1)) = 0.31025035294364447031... - Amiram Eldar, Jan 09 2021

Examples

			2 is a member as 2 = prime(1) and as 2^1 divides but 2^2 does not divide 2.
3 is NOT a member as 3 = prime(2) but 3^2 does not divide 3.
4 is NOT a member as 2^2 divides 4.
6 is a member as 2 = prime(1) and 2^1 is a divisor of 6, but 2^2 is not.
9 is a member as 3 = prime(2) and 3^2 divides 9.
		

Crossrefs

Intersection with A276078 gives A276937.
Cf. A016825, A051063 (subsequences).
Complement of A325130.

Programs

  • Maple
    q:= n-> ormap(i-> numtheory[pi](i[1])=i[2], ifactors(n)[2]):
    select(q, [$1..225])[];  # Alois P. Heinz, Nov 18 2024
  • Mathematica
    Select[Range[225], AnyTrue[FactorInteger[#], PrimePi[First[#1]] == Last[#1] &] &] (* Amiram Eldar, Jan 09 2021 *)

A325762 Heinz numbers of integer partitions with no part greater than the number of ones.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 36, 40, 48, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 192, 200, 216, 224, 240, 256, 288, 320, 324, 336, 352, 360, 384, 400, 432, 448, 480, 512, 560, 576, 600, 640, 648, 672, 704, 720, 768, 784, 800, 832, 864, 896, 960, 972, 1000
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

After 1 and 2, first differs from A322136 in having 200.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A002865.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     8: {1,1,1}
    12: {1,1,2}
    16: {1,1,1,1}
    24: {1,1,1,2}
    32: {1,1,1,1,1}
    36: {1,1,2,2}
    40: {1,1,1,3}
    48: {1,1,1,1,2}
    64: {1,1,1,1,1,1}
    72: {1,1,1,2,2}
    80: {1,1,1,1,3}
    96: {1,1,1,1,1,2}
   108: {1,1,2,2,2}
   112: {1,1,1,1,4}
   120: {1,1,1,2,3}
   128: {1,1,1,1,1,1,1}
   144: {1,1,1,1,2,2}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],#==1||EvenQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=FactorInteger[#][[1,2]]&]

A336736 Number of factorizations of n whose distinct factors have disjoint prime signatures.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 5, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The a(n) factorizations for n = 36, 360, 720, 192, 288:
  (36)     (360)    (720)     (192)      (288)
  (6*6)    (5*72)   (8*90)    (3*64)     (8*36)
  (2*2*9)  (8*45)   (9*80)    (4*48)     (9*32)
  (3*3*4)  (9*40)   (10*72)   (6*32)     (16*18)
           (10*36)  (16*45)   (12*16)    (2*144)
           (5*8*9)  (5*144)   (3*8*8)    (6*6*8)
                    (5*9*16)  (4*6*8)    (2*2*72)
                    (8*9*10)  (3*4*16)   (2*9*16)
                              (3*4*4*4)  (3*3*32)
                                         (2*2*8*9)
                                         (3*3*4*8)
                                         (2*2*2*36)
                                         (2*2*2*2*2*9)
		

Crossrefs

A001055 counts factorizations.
A118914 is sorted prime signature.
A124010 is prime signature.
A336737 counts factorizations with intersecting signatures.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]];
    Table[Length[Select[facs[n],stableQ[#,Intersection[prisig[#1],prisig[#2]]!={}&]&]],{n,100}]

A109299 Primal codes of canonical finite permutations on positive integers.

Original entry on oeis.org

1, 2, 12, 18, 360, 540, 600, 1350, 1500, 2250, 75600, 105840, 113400, 126000, 158760, 246960, 283500, 294000, 315000, 411600, 472500, 555660, 735000, 864360, 992250, 1296540, 1389150, 1440600, 1653750, 2572500, 3241350, 3601500, 3858750
Offset: 1

Views

Author

Jon Awbrey, Jul 09 2005

Keywords

Comments

A canonical finite permutation on positive integers is a bijective mapping of [n] = {1, ..., n} to itself, counting the empty mapping as a permutation of the empty set.
From Rémy Sigrist, Sep 18 2021: (Start)
As usual with lists, the terms of the sequence are given in ascending order.
Equivalently, these are the numbers m such that A001221(m) = A051903(m) = A061395(m) = A071625(m).
This sequence has connections with A175061; here the prime factorizations, there the run-lengths in binary expansions, encode finite permutations.
There are m! terms with m distinct prime factors, the least one being A006939(m) and the greatest one being A076954(m); these m! terms are not necessarily contiguous. (End)

Examples

			Writing (prime(i))^j as i:j, we have this table:
Primal Codes of Canonical Finite Permutations
        1 = { }
        2 = 1:1
       12 = 1:2 2:1
       18 = 1:1 2:2
      360 = 1:3 2:2 3:1
      540 = 1:2 2:3 3:1
      600 = 1:3 2:1 3:2
     1350 = 1:1 2:3 3:2
     1500 = 1:2 2:1 3:3
     2250 = 1:1 2:2 3:3
    75600 = 1:4 2:3 3:2 4:1
   105840 = 1:4 2:3 3:1 4:2
   113400 = 1:3 2:4 3:2 4:1
   126000 = 1:4 2:2 3:3 4:1
   158760 = 1:3 2:4 3:1 4:2
   246960 = 1:4 2:2 3:1 4:3
   283500 = 1:2 2:4 3:3 4:1
   294000 = 1:4 2:1 3:3 4:2
   315000 = 1:3 2:2 3:4 4:1
   411600 = 1:4 2:1 3:2 4:3
   472500 = 1:2 2:3 3:4 4:1
   555660 = 1:2 2:4 3:1 4:3
   735000 = 1:3 2:1 3:4 4:2
   864360 = 1:3 2:2 3:1 4:4
   992250 = 1:1 2:4 3:3 4:2
  1296540 = 1:2 2:3 3:1 4:4
  1389150 = 1:1 2:4 3:2 4:3
  1440600 = 1:3 2:1 3:2 4:4
  1653750 = 1:1 2:3 3:4 4:2
  2572500 = 1:2 2:1 3:4 4:3
  3241350 = 1:1 2:3 3:2 4:4
  3601500 = 1:2 2:1 3:3 4:4
  3858750 = 1:1 2:2 3:4 4:3
  5402250 = 1:1 2:2 3:3 4:4
		

References

  • Suggested by Franklin T. Adams-Watters

Crossrefs

Programs

  • PARI
    \\ See Links section.
    
  • PARI
    is(n) = { my (f=factor(n), p=f[,1]~, e=f[,2]~); Set(e)==[1..#e] && (#p==0 || p[#p]==prime(#p)) } \\ Rémy Sigrist, Sep 18 2021

Extensions

Offset changed to 1 and data corrected by Rémy Sigrist, Sep 18 2021

A324855 Lexicographically earliest sequence containing 2 and all squarefree numbers > 2 whose prime indices already belong to the sequence.

Original entry on oeis.org

2, 3, 5, 11, 15, 31, 33, 47, 55, 93, 127, 137, 141, 155, 165, 211, 235, 257, 341, 381, 411, 465, 487, 517, 633, 635, 685, 705, 709, 771, 773, 811, 907, 977, 1023, 1055, 1285, 1297, 1397, 1457, 1461, 1483, 1507, 1551, 1621, 1705, 1905, 2055, 2127, 2293, 2319
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    5: {3}
   11: {5}
   15: {2,3}
   31: {11}
   33: {2,5}
   47: {15}
   55: {3,5}
   93: {2,11}
  127: {31}
  137: {33}
  141: {2,15}
  155: {3,11}
  165: {2,3,5}
  211: {47}
  235: {3,15}
  257: {55}
  341: {5,11}
  381: {2,31}
		

Crossrefs

Programs

  • Maple
    S:= {2}: count:= 1:
    for n from 3 by 2 while count < 100 do
      F:= ifactors(n)[2];
      if max(map(t -> t[2],F))=1 and {seq(numtheory:-pi(t[1]),t=F)} subset S then
         S:= S union {n}; count:= count+1;
      fi
    od:
    sort(convert(S,list)); # Robert Israel, Mar 22 2019
  • Mathematica
    aQ[n_]:=Switch[n,1,False,2,True,?(!SquareFreeQ[#]&),False,,And@@Cases[FactorInteger[n],{p_,k_}:>aQ[PrimePi[p]]]];
    Select[Range[1000],aQ]
Previous Showing 31-40 of 42 results. Next