A111597
Lah numbers: a(n) = n!*binomial(n-1,6)/7!.
Original entry on oeis.org
1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480, 779155977600, 20777492736000, 565147802419200, 15721384321843200, 448059453172531200, 13097122477350912000, 392913674320527360000, 12101741169072242688000
Offset: 7
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
-
[Factorial(n-7)*Binomial(n, 7)*Binomial(n-1, 6): n in [7..30]]; // G. C. Greubel, May 10 2021
-
k = 7; a[n_] := n!*Binomial[n-1, k-1]/k!; Table[a[n], {n, k, 22}] (* Jean-François Alcover, Jul 09 2013 *)
-
[factorial(n-7)*binomial(n, 7)*binomial(n-1, 6) for n in (7..30)] # G. C. Greubel, May 10 2021
A180047
Coefficient triangle of the numerators of the (n-th convergents to) the continued fraction w/(1 + w/(2 + w/(3 + w/(...)))).
Original entry on oeis.org
0, 0, 1, 0, 2, 0, 6, 1, 0, 24, 6, 0, 120, 36, 1, 0, 720, 240, 12, 0, 5040, 1800, 120, 1, 0, 40320, 15120, 1200, 20, 0, 362880, 141120, 12600, 300, 1, 0, 3628800, 1451520, 141120, 4200, 30, 0, 39916800, 16329600, 1693440, 58800, 630, 1, 0, 479001600
Offset: 0
Triangle starts:
0;
0, 1;
0, 2;
0, 6, 1;
0, 24, 6;
0, 120, 36, 1;
0, 720, 240, 12;
The numerator of w/(1+w/(2+w/(3+w/(4+w/5)))) equals 120*w + 36*w^2 + w^3.
-
Table[CoefficientList[Numerator[Together[Fold[w/(#2+#1) &,Infinity,Reverse @ Table[k,{k,1,n}]]]],w],{n,16}]; (* or equivalently *) Table[(n-m+1)!/m! *Binomial[n-m,m-1], {n,0,16}, {m,0,Floor[n/2+1/2]}]
A351640
Triangle read by rows: T(n,k) is the number of patterns of length n with all distinct runs and maximum value k.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 10, 18, 24, 0, 1, 16, 72, 96, 120, 0, 1, 34, 168, 528, 600, 720, 0, 1, 52, 486, 1632, 4200, 4320, 5040, 0, 1, 90, 1062, 6024, 16200, 36720, 35280, 40320, 0, 1, 152, 2460, 16896, 73200, 169920, 352800, 322560, 362880
Offset: 0
Triangle begins:
1,
0, 1;
0, 1, 2;
0, 1, 4, 6;
0, 1, 10, 18, 24;
0, 1, 16, 72, 96, 120;
0, 1, 34, 168, 528, 600, 720;
...
The T(3,1) = 1 pattern is 111.
The T(3,2) = 4 patterns are 112, 122, 211, 221.
The T(3,3) = 6 patterns are 123, 132, 213, 231, 312, 321.
-
\\ here LahI is A111596 as row polynomials.
LahI(n, y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p, i, y)*LahI(i, y))}
R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]}
T(n)={my(q=S(n), v=concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)) ))); [Vecrev(p) | p<-v]}
{ my(A=T(10)); for(n=1, #A, print(A[n])) }
A111598
Lah numbers: a(n) = n!*binomial(n-1,7)/8!.
Original entry on oeis.org
1, 72, 3240, 118800, 3920400, 122316480, 3710266560, 111307996800, 3339239904000, 100919250432000, 3088129063219200, 96012739965542400, 3040403432242176000, 98228418580131840000, 3241537813144350720000
Offset: 8
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
-
[Factorial(n-8)*Binomial(n,8)*Binomial(n-1,7): n in [8..35]]; // G. C. Greubel, May 10 2021
-
Table[(n-8)!*Binomial[n-1,7]*Binomial[n,8], {n,8,35}] (* G. C. Greubel, May 10 2021 *)
-
[factorial(n-8)*binomial(n,8)*binomial(n-1,7) for n in (8..35)] # G. C. Greubel, May 10 2021
A268434
Triangle read by rows, Lah numbers of order 2, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 10, 10, 1, 0, 100, 140, 28, 1, 0, 1700, 2900, 840, 60, 1, 0, 44200, 85800, 31460, 3300, 110, 1, 0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1, 0, 81770000, 185874000, 90563200, 14700400, 943800, 25480, 280, 1
Offset: 0
[1]
[0, 1]
[0, 2, 1]
[0, 10, 10, 1]
[0, 100, 140, 28, 1]
[0, 1700, 2900, 840, 60, 1]
[0, 44200, 85800, 31460, 3300, 110, 1]
[0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1]
-
T := proc(n,k) option remember;
if n=k then return 1 fi; if k<0 or k>n then return 0 fi;
T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k) end:
seq(seq(T(n,k), k=0..n), n=0..8);
# Alternatively with the P-transform (cf. A269941):
A268434_row := n -> PTrans(n, n->`if`(n=1,1, ((n-1)^2+1)/(n*(4*n-2))),
(n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A268434_row(n)), n=0..8);
-
T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^2 + k^2)*T[n-1, k]; T[, ] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
-
#cached_function
def T(n, k):
if n==k: return 1
if k<0 or k>n: return 0
return T(n-1, k-1)+((n-1)^2+k^2)*T(n-1, k)
for n in range(8): print([T(n, k) for k in (0..n)])
# Alternatively with the function PtransMatrix (cf. A269941):
PtransMatrix(8, lambda n: 1 if n==1 else ((n-1)^2+1)/(n*(4*n-2)), lambda n, k: (-1)^k*factorial(2*n)/factorial(2*k))
A344050
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*|Lah(n, k)|. Inverse binomial convolution of the unsigned Lah numbers A271703.
Original entry on oeis.org
1, 1, -3, 1, 73, -699, 3001, 24697, -783999, 10946233, -80958779, -656003919, 40097528857, -944102982419, 14449693290033, -81180376526759, -4110744092532479, 203618771909117937, -5868277577182238579, 117997016943575159713, -1055340561026036009559, -45279878749358024400299
Offset: 0
-
aList := proc(len) local lah;
lah := (n, k) -> `if`(n = k, 1, binomial(n-1, k-1)*n!/k!):
seq(add((-1)^(n-k)*binomial(n, k)*lah(n, k), k = 0..n), n = 0..len-1) end:
print( aList(22) );
-
a[n_] := (-1)^(n-1) n n! HypergeometricPFQ[{1 - n, 1 - n}, {2, 2}, -1]; a[0] := 1;
Table[a[n], {n, 0, 20}]
A111599
Lah numbers: a(n) = n!*binomial(n-1,8)/9!.
Original entry on oeis.org
1, 90, 4950, 217800, 8494200, 309188880, 10821610800, 371026656000, 12614906304000, 428906814336000, 14668613050291200, 506733905373696000, 17735686688079360000, 630299019222512640000, 22780807409042242560000
Offset: 9
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
-
part_ZL:=[S,{S=Set(U,card=r),U=Sequence(Z,card>=1)}, labeled]: seq(count(subs(r=9,part_ZL),size=m),m=9..23) ; # Zerinvary Lajos, Mar 09 2007
-
Table[n!*Binomial[n-1, 8]/9!, {n, 9, 30}] (* Wesley Ivan Hurt, Dec 10 2013 *)
A111600
Lah numbers: a(n) = n!*binomial(n-1,9)/10!.
Original entry on oeis.org
1, 110, 7260, 377520, 17177160, 721440720, 28857628800, 1121325004800, 42890681433600, 1629845894476800, 61934143990118400, 2364758225077248000, 91043191665474048000, 3543681152517682176000, 139722285442125754368000
Offset: 10
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
-
Table[n! * Binomial[n - 1, 9]/10!, {n, 10, 25}] (* Amiram Eldar, May 02 2022 *)
Original entry on oeis.org
1, 2, 5, 18, 91, 592, 4643, 42276, 436629, 5033182, 63974273, 888047414, 13358209647, 216334610860, 3751352135263, 69325155322184, 1359759373992105, 28206375825238458, 616839844140642301, 14181213537729200474, 341879141423814854915, 8623032181189674581256
Offset: 0
a(20) = 1 + 1 + 3 + 13 + 73 + 501 + 4051 + 37633 + 394353 + 4596553 + 58941091 + 824073141 + 12470162233 + 202976401213 + 3535017524403 + 65573803186921 + 1290434218669921 + 26846616451246353 + 588633468315403843 + 13564373693588558173 + 327697927886085654441.
-
l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >;
[n eq 0 select 1 else 1 + (&+[ Factorial(j)*( l(j,-1) - l(j-1,-1) ): j in [1..n]]): n in [0..25]]; // G. C. Greubel, Mar 09 2021
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*j!*binomial(n-1, j-1), j=1..n))
end:
a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..25); # Alois P. Heinz, May 11 2016
-
With[{m = 25}, CoefficientList[Exp[x/(1-x)] + O[x]^m, x] Range[0, m-1]!// Accumulate] (* Jean-François Alcover, Nov 21 2020 *)
Table[1 +Sum[j!*(LaguerreL[j, -1] -LaguerreL[j-1, -1]), {j,n}], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
-
[1 + sum(factorial(j)*(gen_laguerre(j,0,-1) - gen_laguerre(j-1,0,-1)) for j in (1..n)) for n in (0..30)] # G. C. Greubel, Mar 09 2021
A216154
Triangle read by rows, T(n,k) n>=0, k>=0, generalization of A000255.
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 11, 21, 9, 1, 53, 128, 78, 16, 1, 309, 905, 710, 210, 25, 1, 2119, 7284, 6975, 2680, 465, 36, 1, 16687, 65821, 74319, 35035, 7945, 903, 49, 1, 148329, 660064, 857836, 478464, 133630, 19936, 1596, 64, 1, 1468457, 7275537, 10690812, 6879684, 2279214, 419958, 44268, 2628, 81, 1
Offset: 0
1,
1, 1,
3, 4, 1,
11, 21, 9, 1,
53, 128, 78, 16, 1,
309, 905, 710, 210, 25, 1,
2119, 7284, 6975, 2680, 465, 36, 1,
16687, 65821, 74319, 35035, 7945, 903, 49, 1,
148329, 660064, 857836, 478464, 133630, 19936, 1596, 64, 1,
-
A216154 := proc(n,k) local L, Z;
L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*C(n,n-k)*C(n-1,n-k)):
Z := (n,k) -> add(C(-j,-n)*L(j,k), j=0..n);
Z(n+1, k+1) end:
seq(seq(A216154(n,k), k=0..n), n=0..9); # Peter Luschny, Apr 13 2016
-
T[0, 0] = 1; T[0, ] = 0; T[n, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (2k+1) T[n-1, k] + (k+1) (k+2) T[n-1, k+1]; T[, ] = 0;
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
-
def A216154_triangle(dim):
M = matrix(ZZ,dim,dim)
for n in (0..dim-1): M[n,n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n,k] = M[n-1,k-1]+(1+2*k)*M[n-1,k]+(k+1)*(k+2)*M[n-1,k+1]
return M
A216154_triangle(9)
Comments