cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A186696 a(n)=(A112998(n)-1)/12.

Original entry on oeis.org

5, 6, 16, 23, 33, 35, 51, 55, 63, 91, 103, 121, 138, 178, 195, 216, 233, 243, 268, 348, 385, 436, 510, 511, 518, 588, 628, 675, 693, 696, 710, 723, 741, 751, 773, 810, 818, 863, 913, 930, 973, 975, 1025, 1035, 1036, 1045, 1070, 1071, 1115, 1161, 1260, 1273, 1311, 1336, 1365, 1368, 1386, 1438, 1441, 1448, 1490, 1501, 1508, 1521, 1540, 1546, 1623, 1651, 1655, 1720
Offset: 1

Views

Author

Zak Seidov, Feb 25 2011

Keywords

Comments

All terms in A112998 are congruent to 1 modulo 12, hence this sequence.

Crossrefs

Cf. A112998.

A328160 Terms k of A112998 such that k+2 is nonsquarefree.

Original entry on oeis.org

61, 73, 277, 421, 2797, 6217, 8521, 9277, 9817, 10357, 11161, 12301, 12841, 13381, 15121, 17377, 17881, 18097, 19861, 25657, 30517, 30661, 33037, 35521, 36241, 36457, 48121, 50821, 51481, 54421, 56437, 58417, 60217, 66601, 66697, 67057, 71341, 74077, 77641, 79801, 88117, 94777, 96181, 98017
Offset: 1

Views

Author

Robert Israel, Oct 05 2019

Keywords

Comments

Complement of A328137 in A112998.
Each term is either 3*x^2-2 where x, 3*x^2-2 and (3*x^2-1)/2 are prime or it is 9*x-2 where x, 9*x-2 and (9*x-1)/2 are prime.

Examples

			a(3)=277 is a term because 277 is prime, 277+1=2*139 where 139 is prime, and 279=3^2*31 is a 3-almost prime that is nonsquarefree.
		

Crossrefs

Programs

  • Maple
    N:= 100000:
    A1:= map(x -> 3*x^2-2, select(x -> isprime(x) and isprime(3*x^2-2) and isprime((3*x^2-1)/2), {seq(i,i=3..floor(sqrt((N+2)/3)),2)})):
    A2:= map(x -> 9*x-2, select(x -> isprime(x) and isprime(9*x-2) and isprime((9*x-1)/2), {seq(i,i=3..(N+2)/9,2)})):
    sort(convert(A1 union A2,list));
  • Mathematica
    Select[Prime@ Range[10^4], And[PrimeOmega /@ {# + 1, # + 2} == {2, 3}, ! SquareFreeQ[# + 2]] &] (* Michael De Vlieger, Oct 06 2019 *)

A072875 Smallest start for a run of n consecutive numbers of which the i-th has exactly i prime factors.

Original entry on oeis.org

2, 3, 61, 193, 15121, 838561, 807905281, 19896463921, 3059220303001, 3931520917431241
Offset: 1

Views

Author

Rick L. Shepherd, Jun 30 2002 and Jens Kruse Andersen, Jul 28 2002

Keywords

Comments

By definition, each term of this sequence is prime.
a(11) <= 1452591346605212407096281241 (Frederick Schneider), see primepuzzles link. - sent by amd64(AT)vipmail.hu, Dec 21 2007
Prime factors are counted with multiplicity. - Harvey P. Dale, Mar 09 2021

Examples

			a(3)=61 because 61 (prime), 62 (=2*31), 63 (=3*3*7) have exactly 1, 2, 3 prime factors respectively, and this is the smallest solution;
a(6)=807905281: 807905281 is prime; 807905281+1=2*403952641;
807905281+2=3*15733*17117; 807905281+3=2*2*1871*107951;
807905281+4=5*11*43*211*1619; 807905281+5=2*3*3*3*37*404357;
807905281+6=7*7*7*7*29*41*283; 807905281 is the smallest number m such that m+k is product of k+1 primes for k=0,1,2,3,4,5,6.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 61, p. 22, Ellipses, Paris 2008.

Crossrefs

a(1) = A000040(1), a(2) = A005383(1), a(3) = A112998(1), a(4) = A113000(1), a(5) = A113008(1), a(6) = A113150(1).

Programs

  • Mathematica
    (* This program is not suitable to compute a large number of terms. *) nmax = 6; kmax = 10^6; a[1] = 2; a[n_] := a[n] = For[k = a[n-1]+n-1, k <= kmax, k++, If[AllTrue[Range[0, n-1], PrimeOmega[k+#] == #+1&], Return[k] ] ]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, nmax}] (* Jean-François Alcover, Sep 06 2017 *)

Extensions

a(7) found by Mark W. Lewis
a(8) and a(9) found by Jens Kruse Andersen
a(10) found by Jens Kruse Andersen; probably a(11) > 10^20. - Aug 24 2002
Entry revised by N. J. A. Sloane, Jan 26 2007
Cross-references and editing by Charles R Greathouse IV, Apr 20 2010

A113000 Numbers k such that k, k+1, k+2 and k+3 are 1,2,3,4-almost primes.

Original entry on oeis.org

193, 421, 661, 1093, 1657, 2137, 2341, 2593, 6217, 7057, 8101, 9817, 12421, 12853, 15121, 16033, 16417, 17257, 17881, 19813, 20641, 21817, 25033, 25657, 27337, 28921, 30661, 31081, 31321, 31333, 32377, 35521, 36457, 38281, 40693, 45553
Offset: 1

Views

Author

Zak Seidov, Jan 03 2006

Keywords

Comments

Subsequence of A112998: a(1) = 193 = A112998(3), a(2) = 421= A112998(6), a(3) = 661 = A112998(8). - Zak Seidov, Oct 14 2012

Examples

			193 is prime, 194=2*97 is semiprime, 195=3*5*13 is 3-almost prime, 196=2*2*7*7 is 4-almost prime.
		

Crossrefs

Cf. A112998.

Programs

  • Magma
    [n: n in PrimesUpTo(5*10^4) | forall{k: k in [1..3] | &+[f[j, 2]: j in [1..#f]] eq k+1 where f is Factorization(n+k)}]; // Vincenzo Librandi, Sep 24 2012
    
  • Mathematica
    Do[p=Prime[n];If[Table[Total[FactorInteger[p+k]][[2]], {k, 3}]=={2, 3, 4}, Print[p]], {n, 1, 10000}]
  • PARI
    list(lim)=my(v=List(), L=(lim+2)\3, t); forprime(p=3, L\3, forprime(q=3, min(L\p, p), t=3*p*q-2; if(t%12==1 && isprime(t) && isprime((t+1)/2) && bigomega(t+3)==4, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Extensions

Edited by Charles R Greathouse IV, Apr 20 2010

A113008 Numbers k such that k, k+1, k+2, k+3 and k+4 are respectively 1,2,3,4,5-almost primes.

Original entry on oeis.org

15121, 35521, 52321, 117841, 235441, 313561, 398821, 516421, 520021, 531121, 570601, 623641, 761113, 838561, 941041, 1117321, 1190821, 1317361, 1333621, 1336177, 1372081, 1413793, 1424041, 1431361, 1488901, 1513921, 1560121
Offset: 1

Views

Author

Zak Seidov, Jan 03 2006

Keywords

Comments

All listed terms are congruent to 1 modulo 12.

Examples

			15121 is prime (or 1-almost prime), 15122=2*7561 is semiprime (or 2-almost prime), 15123=3*71*71 is 3-almost prime, 15124=2*2*29*199 is 4-almost prime, 15125=5*5*5*11*11 is 5-almost prime.
		

Crossrefs

Programs

  • Magma
    [n: n in PrimesUpTo(2*10^6) | forall{k: k in [1..4] | &+[f[j, 2]: j in [1..#f]] eq k+1 where f is Factorization(n+k)}]; // Vincenzo Librandi, Sep 24 2012
    
  • Mathematica
    f[n_] := Plus @@ Last /@ FactorInteger@n; t = {}; Do[p = Prime[n]; If[Array[ f[p + # ] &, 4] == {2, 3, 4, 5}, AppendTo[t, p]], {n, 126483}]; t (* Robert G. Wilson v *)
    aprQ[p_]:=Total[FactorInteger[#][[All,2]]]&/@Range[p+1,p+4]=={2,3,4,5}; Select[ Prime[ Range[120000]],aprQ] (* Harvey P. Dale, Dec 17 2022 *)
  • PARI
    list(lim)=my(v=List(), L=(lim+2)\3, t); forprime(p=3, L\3, forprime(q=3, min(L\p, p), t=3*p*q-2; if(t%12==1 && isprime(t) && isprime((t+1)/2) && bigomega(t+3)==4 && bigomega(t+4)==5, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 05 2017

Extensions

More terms from Robert G. Wilson v, Jan 05 2006

A113150 Primes p such that p+1, p+2, p+3, p+4, p+5 are resp. 2-, 3-, 4-, 5-, 6-almost primes.

Original entry on oeis.org

838561, 1190821, 2116921, 3318421, 3456721, 3720361, 3776881, 4185121, 5712241, 5811241, 6455521, 6457621, 6793321, 7450501, 7981801, 8321881, 8391001, 9903721, 11420041, 11980921, 12806041, 13311301, 13748521, 14326021, 14566261
Offset: 1

Views

Author

Zak Seidov, Jan 04 2006

Keywords

Comments

All terms == 1 (mod 12).

Crossrefs

Programs

  • Magma
    [ n: n in PrimesUpTo(15000000) | forall{ k: k in [1..5] | &+[ f[j, 2]: j in [1..#f] ] eq k+1 where f is Factorization(n+k) } ]; // Klaus Brockhaus, Jan 24 2011
    
  • Mathematica
    Select[Prime[Range[10^6]], PrimeOmega[#+1]==2 && PrimeOmega[#+2]==3 && PrimeOmega[#+3]==4 && PrimeOmega[#+4]==5 && PrimeOmega[#+5]==6&] (* James C. McMahon, Jun 16 2024 *)
  • PARI
    isok(n) = bigomega(n)==1 && bigomega(n+1)==2 && bigomega(n+2)==3 && bigomega(n+3)==4 && bigomega(n+4)==5 && bigomega(n+5)==6; \\ Michel Marcus, Oct 23 2014

Extensions

Edited by Charles R Greathouse IV, Apr 20 2010

A201147 Numbers m such that m, m-1 and m-2 are 1,2,3-almost primes respectively.

Original entry on oeis.org

47, 107, 167, 263, 347, 359, 467, 479, 563, 863, 887, 983, 1019, 1187, 1283, 1907, 2039, 2063, 2099, 2447, 2819, 2879, 3023, 3167, 3203, 3623, 3803, 3947, 4139, 4919, 5387, 5399, 5507, 5879, 6599, 6659, 6983, 7079, 7187, 7523, 7559, 7703, 8423, 8699, 8963
Offset: 1

Views

Author

Antonio Roldán, Nov 27 2011

Keywords

Comments

m-2 is multiple of 3.
m is of the form 12k-1.
This sequence is subset of A005385.
Following a suggestion of Claudio Meller.

Examples

			2099 is prime, 2098=2*1049 is semiprime, 2097=3*3*233 is 3-almost prime.
		

Crossrefs

Programs

  • Mathematica
    primeCount[n_] := Plus @@ Transpose[FactorInteger[n]][[2]]; Select[Range[10000], primeCount[#] == 1 && primeCount[#-1] == 2 && primeCount[#-2] == 3 &] (* T. D. Noe, Nov 28 2011 *)
    Select[Range[10000],PrimeOmega[Range[#,#+2]]=={3,2,1}&]+2 (* Harvey P. Dale, Dec 10 2011 *)
  • PARI
    list(lim)=my(v=List(),L=(lim-2)\3,t); forprime(p=3,L\3, forprime(q=3,min(p,L\p), t=3*p*q+2; if(isprime(t) && isprime((t-1)/2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

A328137 Primes p such that p+1 is the product of two distinct primes and p+2 is the product of three distinct primes.

Original entry on oeis.org

193, 397, 613, 661, 757, 1093, 1237, 1453, 1657, 2137, 2341, 2593, 2917, 3217, 4177, 4621, 5233, 6121, 6133, 7057, 7537, 8101, 8317, 8353, 8677, 8893, 9013, 9721, 10957, 11677, 11701, 12421, 12433, 12541, 12853, 13933, 15277, 15733, 16033, 16381, 16417, 16633, 17257, 17293, 18013, 18253, 18481
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Oct 04 2019

Keywords

Comments

All terms == 1 (mod 12).
Members k of A112998 such that k+2 is squarefree.

Examples

			a(3)=613 is in the sequence because 613 is prime, 614=2*307 is the product of two distinct primes, and 615=3*5*41 is the product of three distinct primes.
		

Crossrefs

Contained in A005383, A100363 and A112998.

Programs

  • Magma
    [p:p in PrimesUpTo(20000)| IsPrime((p+1) div 2) and IsSquarefree(p+2) and #PrimeDivisors(p+2) eq 3]; // Marius A. Burtea, Oct 04 2019
  • Maple
    select(t -> isprime(t) and isprime((t+1)/2) and numtheory:-issqrfree(t+2) and numtheory:-bigomega(t+2)=3, [seq(i,i=1..10^5,12)]);

A255092 Least prime p such that p+n is product of (n+1) primes (with multiplicity).

Original entry on oeis.org

2, 3, 43, 13, 239, 59, 171869, 569, 32797, 2551, 649529, 6133, 1708984363, 57331, 103630981, 65521, 301327031, 262127, 82244873046857, 11943917, 38354628391, 26214379, 679922958173, 37748713, 584125518798828101, 553648103, 7625597484961, 2281701349, 882592301503097, 8153726947
Offset: 0

Views

Author

Zak Seidov, Feb 14 2015

Keywords

Comments

For n>0, terms with odd indices 3, 13, 59, 569... are much smaller than neighbor terms with even indices.
For n > 0, a(n) >= A053669(n)^(n+1) - n. - Robert Israel, Sep 25 2024

Examples

			2+0=2(prime), 3+1=4=2*2, 43+2=45=3*3*5, 13+3=16=2^4, 239+4=243=3^5,59+5=64=2^6,171869+6=171875=5^6*11,569+7=574=2^6*3^2,
32797+8=32805=3^5*5, 2551+9=2590=2^9*5, 649529+10=649539=3^10*11, 6133+11=6143=2^11*3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
        uses priqueue;
          local pq, t, v, p,w,i;
          initialize(pq);
          p:= 2;
          while n mod p = 0 do p:= nextprime(p) od;
          insert([-p^(n+1),[p$(n+1)]],pq);
          do
            t:= extract(pq);
            v:= -t[1]; w:= t[2];
            if isprime(v-n) then return v-n fi;
            p:= nextprime(w[-1]);
          while n mod p = 0 do p:= nextprime(p) od:
           for i from n+1 to 1 by -1 while w[i] = w[n+1] do
            insert([t[1]*(p/w[n+1])^(n+2-i),[op(w[1..i-1]),p$(n+2-i)]],pq);
         od od
    end proc:
    f(0):= 2:
    map(f, [$0..40]); # Robert Israel, Sep 25 2024

Extensions

More terms from Robert Israel, Sep 25 2024

A201220 Numbers m such that m, m-1, m-2 and m-3 are 1,2,3,4-almost primes respectively.

Original entry on oeis.org

107, 263, 347, 479, 863, 887, 1019, 2063, 2447, 3023, 3167, 3623, 5387, 5399, 5879, 6599, 6983, 7079, 8423, 8699, 9743, 9887, 10463, 11807, 12263, 12347, 14207, 15383, 15767, 18959, 20663, 22343, 23039, 23567, 24239, 27239, 32183, 33647, 33767, 37799
Offset: 1

Views

Author

Antonio Roldán, Nov 28 2011

Keywords

Comments

Following a suggestion of Claudio Meller.
m is of the form 12k-1, so m-2 is a multiple of 3 and m-3 is a multiple of 4.

Examples

			6599 is prime, 6598=2*3299 is semiprime, 6597=3*3*733 is 3-almost prime, 6596=2*2*17*97 is 4-almost prime.
		

Crossrefs

Subsequence of A005385 and of A201147.

Programs

  • Mathematica
    primeCount[n_] := Plus @@ Transpose[FactorInteger[n]][[2]]; Select[Range[40000], primeCount[#] == 1 && primeCount[#-1] == 2 && primeCount[#-2] == 3 && primeCount[#-3] == 4 &] (* T. D. Noe, Nov 28 2011 *)
    Select[Range[40000],PrimeOmega[Range[#,#+3]]=={4,3,2,1}&]+3 (* Harvey P. Dale, Dec 10 2011 *)
    SequencePosition[PrimeOmega[Range[40000]],{4,3,2,1}][[;;,2]] (* Harvey P. Dale, Oct 08 2023 *)
  • PARI
    list(lim)=my(v=List(), L=(lim-2)\3, t); forprime(p=3, L\3, forprime(q=3, min(p, L\p), t=3*p*q+2; if(isprime(t) && isprime((t-1)/2) && bigomega(t-3)==4, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 02 2017
Showing 1-10 of 11 results. Next