cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A114271 Numbers k such that k^2 + 8 is prime.

Original entry on oeis.org

3, 9, 15, 21, 33, 51, 57, 81, 87, 111, 117, 123, 129, 135, 141, 147, 153, 177, 189, 213, 219, 255, 279, 285, 315, 321, 327, 345, 351, 363, 399, 417, 465, 471, 477, 483, 495, 549, 579, 585, 627, 657, 663, 669, 723, 735, 741, 747, 759, 771, 783, 789, 807, 825
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), this sequence (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

A182238 n^2 + {1,3,7} are primes.

Original entry on oeis.org

2, 4, 10, 74, 146, 256, 440, 470, 584, 920, 1070, 1156, 1324, 1394, 1420, 2080, 2470, 2600, 3326, 3746, 4796, 5996, 6460, 7160, 7466, 8894, 9164, 9554, 9596, 10490, 10970, 11204, 11246, 11336, 11374, 12314, 12386, 13394, 14290, 15586, 16250, 16330, 17060
Offset: 1

Views

Author

Zak Seidov, Apr 20 2012

Keywords

Comments

Under Schinzel's hypothesis H, this sequence is infinite. - Charles R Greathouse IV, Apr 23 2012

Examples

			2^2+{1,3,7}= {5,7,11} all prime, 4^2+{1,3,7}= {17,19,23} all prime.
		

Crossrefs

Intersection of A005574, A049422, A114270.

Programs

  • PARI
    { forstep ( n=2, 10^6, 2,
        ns = n * n;
        if ( ! isprime( ns+1 ), next() );
        if ( ! isprime( ns+3 ), next() );
        if ( ! isprime( ns+7 ), next() );
        print1(n, ", ");
    ); }
    /* Joerg Arndt, Apr 22 2012 */

A264790 Numbers k such that k^2 + 17 is prime.

Original entry on oeis.org

0, 6, 24, 60, 66, 78, 90, 108, 144, 162, 174, 186, 234, 252, 294, 300, 318, 330, 336, 342, 372, 396, 420, 438, 456, 462, 468, 498, 528, 594, 636, 648, 654, 672, 720, 750, 798, 804, 834, 858, 888, 924, 930, 966, 984, 990, 1014, 1026, 1032, 1086, 1158, 1194, 1200
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2015

Keywords

Comments

Primes of the form k^2 + 17 have a representation as a sum of 2 squares because they belong to A002144.
All terms are multiple of 6.

Examples

			a(3) = 24 because 24^2 + 17 = 593, which is prime.
		

Crossrefs

Cf. A228244 (associated primes).
Other sequences of the type "Numbers n such that n^2 + k is prime": A005574 (k=1), A067201 (k=2), A049422 (k=3), A007591 (k=4), A078402 (k=5), A114269 (k=6), A114270 (k=7), A114271 (k=8), A114272 (k=9), A114273 (k=10), A114274 (k=11), A114275 (k=12), A113536 (k=13), A121250 (k=14), A121982 (k=15), A122062 (k=16).

Programs

  • Magma
    [n: n in [0..1200 ] | IsPrime(n^2+17)]; // Vincenzo Librandi, Nov 25 2015
  • Mathematica
    Select[Range[0, 1200], PrimeQ[#^2 + 17] &] (* Michael De Vlieger, Nov 25 2015 *)
  • PARI
    for(n=0, 1e3, if(isprime(n^2+17), print1(n, ", "))) \\ Altug Alkan, Nov 25 2015
    

Formula

A000005(A241847(a(n))) = 2.
A241847(a(n)) = A228244(n).

Extensions

Edited by Bruno Berselli, Nov 26 2015

A356109 Numbers k such that k^2 + {1,3,7,13} are prime.

Original entry on oeis.org

2, 4, 10, 5996, 8894, 11204, 14290, 23110, 30866, 37594, 43054, 64390, 74554, 83464, 93460, 109456, 111940, 132304, 151904, 184706, 238850, 262630, 265990, 277630, 300206, 315410, 352600, 355450, 376190, 404954, 415180, 462830, 483494, 512354, 512704, 566296
Offset: 1

Views

Author

Michel Lagneau, Jul 27 2022

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			2^2 + {1,3,7,13} = {5,7,11,17} all prime.
4^2 + {1,3,7,13} = {17,19,23,29} all prime.
		

Crossrefs

Intersection of A005574, A049422, A114270, A113536.
Subsequence of A182238.

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 27 2022
  • Mathematica
    Select[Range[500000], AllTrue[#^2 + {1,3,7,13}, PrimeQ] &] (* Amiram Eldar, Jul 27 2022 *)
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 27 2022

A127845 Numbers k such that k^2 + 5 and k^2 + 7 are twin primes.

Original entry on oeis.org

0, 6, 12, 36, 48, 78, 114, 162, 258, 414, 666, 792, 804, 996, 1044, 1206, 1308, 1314, 1356, 1548, 1584, 1632, 1734, 1902, 2106, 2196, 2214, 2346, 2358, 2592, 2634, 2766, 2808, 2868, 2892, 2988, 3072, 3246, 3432, 3516, 3576, 3774, 3894, 3912, 3996, 4038
Offset: 1

Views

Author

Zak Seidov, Apr 05 2007

Keywords

Comments

All terms are multiples of 6. Intersection of A114270 and A078402.

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | IsPrime(n^2+5) and IsPrime(n^2+7)] // Vincenzo Librandi, Nov 23 2010
  • Maple
    filter:= n -> isprime(n^2+5) and isprime(n^2+7):
    N:= 10000: # to get all entries <= 6*N
    A127845:= select(filter, [6*n $ n=0..N]); # Robert Israel, Apr 17 2014
  • Mathematica
    Select[Range[0,5000,6],AllTrue[#^2+{5,7},PrimeQ]&] (* Harvey P. Dale, May 25 2023 *)

A356110 Numbers k such that k^2 + {1,3,7,13,31} are prime.

Original entry on oeis.org

4, 10, 14290, 43054, 109456, 315410, 352600, 483494, 566296, 685114, 927070, 1106116, 1248796, 1501174, 1997986, 2399204, 2501404, 2553100, 2726840, 2874680, 3291760, 4129394, 4473766, 4794520, 4901144, 6350306, 7444070, 7753456, 7892504, 8009536, 8069540
Offset: 1

Views

Author

Michel Lagneau, Jul 27 2022

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			4^2 + {1,3,7,13,31} = {17,19,23,29,47} are all prime.
		

Crossrefs

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13,31]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 27 2022
  • Mathematica
    Select[Range[10^6], AllTrue[#^2 + {1,3,7,13,31}, PrimeQ] &] (* Amiram Eldar, Jul 27 2022 *)
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,31})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 27 2022

A356175 Numbers k such that k^2 + {1,3,7,13,163} are prime.

Original entry on oeis.org

2, 4, 10, 14290, 64390, 74554, 83464, 93460, 132304, 238850, 262630, 277630, 300206, 352600, 376190, 404954, 415180, 610340, 806180, 984686, 1025650, 1047050, 1106116, 1382860, 2014624, 2440714, 2525870, 2538344, 2760026, 2826380, 3145600, 3508586, 3715156
Offset: 1

Views

Author

Jean-Marc Rebert, Jul 28 2022

Keywords

Comments

For 14 <= m <= 999 and k <= A356110(31) = 8069560, the number of sets of primes of the form k^2 + {1,3,7,13,m} is the greatest for m = 163. There are 51 such terms. See b-file.
All terms are 2 or 4 modulo 6.

Examples

			2 is a term since 2^2 + {1,3,7,13,163} = {5,7,11,17,167} are all primes.
		

Crossrefs

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1, 3, 7, 13, 163]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 28 2022
  • Mathematica
    Select[Range[4*10^6], AllTrue[#^2 + {1, 3, 7, 13, 163}, PrimeQ] &] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    is(k)=my(v=[1,3,7,13,163],ok=1);for(i=1,#v,if(!isprime(k^2+v[i]),ok=0;break));ok
    
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,163})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 28 2022
Previous Showing 11-17 of 17 results.